Queqiao-2 relay satellite

Chinese satellite
Queqiao 2
Rendering of Queqiao 2 satellite
Mission typeCommunication relay
Radio astronomy
OperatorCNSA
COSPAR ID2024-051A (QUEQIAO-2)
SATCAT no.59274
Mission durationPlanned: 8-10 years
11 days (in progress)
Spacecraft properties
BusCAST-2000[1]
ManufacturerDFH Satellite Company LTD
Dry mass1,200 kilograms (2,600 lb)
DimensionsAntenna: 4.2 metres (14 ft) in diameter[1]
Power1350W[1]
Start of mission
Launch date20 March 2024, 00:31:28 UTC[2]
RocketLong March 8[3]
Launch siteWenchang Space Launch Site LC-2[4]
Orbital parameters
Reference systemSelenocentric frozen orbit
Periselene altitude16,000 km (9,900 mi)[5]
Aposelene altitude200 km (120 mi)[5]
Inclination62.4°[6]
Period24 hours[5]
Lunar orbiter
Orbital insertion24 March 2024, 17:05 UTC[7]
Instruments
  • Grid-based Energetic Neutral Atom imager (GENA)
  • Extreme Ultraviolet Camera (EUC)
  • Lunar Orbit VLBI EXperiment (LOVEX)
← Chang'e 5
Chang'e 6 →
 
Queqiao satellites
← Queqiao

Queqiao-2 relay satellite (Chinese: 鹊桥二号中继卫星; pinyin: Quèqiáo èr hào zhōngjì wèixīng; lit. 'Magpie Bridge 2 relay satellite'), is a second of the two communications relay and radio astronomy satellites designed to support the fourth phase the Chinese Lunar Exploration Program.[8][9][10] The China National Space Administration (CNSA) launched the Queqiao-2 relay satellite on 20 March 2024 to a elliptical frozen orbit around the Moon to support communications from the far side of the Moon and the Lunar south pole.[11][12][13][14]

The name Queqiao ("Magpie Bridge") was inspired by and came from the Chinese tale The Cowherd and the Weaver Girl.[11][10][15]

Background and mission planning

The initial phase of the International Lunar Research Station (ILRS), consists of the Chang'e 7 and Chang'e 8 probes, i.e., is to be built from 2026 on the southern edge of the South Pole–Aitken basin located on the far side of the Moon.[16] While the Queqiao so far only had to look after two probes on the far side of the Moon (Chang'e 4 lander and Yutu-2 rover), it is assumed that up to ten robots will be active there at the time of ILRS, which requires a complex and sophisticated communication network.[17]

So, in March 2024, the Queqiao relay satellite, which has been orbiting in a halo orbit around the Earth-Moon L2 since 2018, will be supplemented by another relay satellite, called Queqiao 2.[14][17] Originally, the idea was to design the relay satellite as an improved version of the Queqiao and launch it together with the Chang'e 7 probe. After a project revision,[18] the Center for Lunar Exploration and Space Projects at the CNSA decided to launch it separately.[19] This allowed the buildibng of a larger variant of the relay satellite that could be launched earlier and used in the Chang'e 6 sample return mission planned for 2024 to the Apollo crater on the far side of the Moon.[17]

Although the first Queqiao has the advantage of relaying constant communications to and fro the far side of the Moon aided by Chinese Deep Space Network, it is disadvantageous, as halo orbits around the Earth-Moon L1 and L2 are inherently unstable[20] and the satellite therefore consumes 80 g (2.8 oz) of fuel for a small orbit correction maneuver approximately every 9 days. Therefore, a frozen elliptic orbit around the Moon itself was chosen for Queqiao 2, in which it has visual contact with the Moon for eight hours, i.e., two thirds of its 12 hour orbit, since the point of its periselene lies above the side of the southern polar region facing away from the Earth.[21]

When Queqiao-2 reaches a position about 200 km from the lunar surface, it will perform capture braking and enter a lunar parking orbit of 200 × 100,000 km with a period of about 10 days. Eventually, Queqiao-2 will enter a large elliptical frozen orbit of 200 × 16,000 km with a period of 24 hours, which is inclined at 62.4° to the equator, no further orbit correction maneuvers are necessary for a period of a good 10 years, i.e., in principle the assumed lifespan of the satellite.[5]

Design

Orbital regime of Queqiao-2 satellite

Queqiao 2 relay satellite and radio observatory is based on the CAST 2000 bus from YTO Group, a subsidiary of the Chinese Academy of Space Technology.[22] It carries a total of 488 kg (1,076 lb) of hydrazine and oxidizer in tanks with a total capacity of 606 L (133 imp gal; 160 US gal), giving it a take-off weight of around 1,200 kg (2,600 lb). The three-axis stabilized satellite has eight engines with a thrust of 20 N each for orbit correction maneuvers as well as eight engines with a thrust of 5 N each and four engines with a thrust of 1 N each for attitude control; it can be aligned with an accuracy of 0.03° (three times as good as the standard version of the satellite bus). Two rotatable solar cell wings, each with two solar arrays, deliver a total output of 1350 W, the operating voltage is 30.5 V. During blackoutor eclipse period, it has accumulators with a charge storage capacity of 135 Ah. The manufacturing company assumes that Queqiao 2 will work properly for at least 8 to 10 years.[23][24]

Adopted from the first Queqiao, a parabolic antenna with a diameter of 4.2 m and an antenna gain of 44 dBi is permanently mounted on the top of the bus- the alignment is carried out via the satellite's attitude control - and is used for radio communication with the lunar surface.[25] In order to be able to accommodate the satellite in the payload fairing of the launch vehicle, the segments of the reflector are folded together during launch. After separating from the upper stage of the rocket and unfolding the solar modules, the antenna is also unfolded at the beginning of the transfer orbit to the Moon.[11][26][27][23][28][1]

Communication with the lunar surface is accomplished in the X band, using a high-gain 4.2 metres (14 ft) deployable parabolic antenna, the largest antenna used for a deep space exploration satellite.[29]

The large parabolic antenna provides 10 simultaneously usable X-band channels for radio traffic down to the Moon and 10 channels for traffic up to the satellite, as well as the possibility of communicating in the decimeter wave range. In the opposite direction, telemetry and payload data from the robots can be transmitted upwards at a speed of 50 kbit/s when using an omnidirectional antenna, and at 5 Mbit/s when using a parabolic antenna. The signals are then demodulated and decoded in the satellite.[25]

The Ka band is used to transmit payload data to the ground stations of the Chinese Academy of Sciences, both from the surface probes on the Moon and from the satellite itself. With quadrature phase shift keying, encryption with low-density parity check code and a traveling wave tube amplifier with 55 W output power, the data transfer rate is on average 100 Mbit/s. The antenna used is a small parabolic antenna with a diameter of 0.6 m in a gimbal suspension, which is mounted on the nadir side of the satellite bus on a fold-out arm that allows it to protrude above the large parabolic antenna.[11][24]

Telemetry and control of the satellite is usually carried out on the S-band, for which there is an S-band omnidirectional antenna at the focal point of the small parabolic antenna in addition to the Ka band transceiver. The data transmission rate for commands from the Earth to the satellite is 2000 bit/s, the telemetry data is transmitted from the satellite to the Earth at a speed of 4096 bit/s. This is twice as fast as the first Queqiao. The position is determined using a combination of the so-called Unified S-Band Technology (USB), where the distance and speed of the satellite are calculated from the Doppler shift of the carrier wave for the telemetry signals, and long-base interferometry, where connected radio telescopes are using the Chinese VLBI network to determine the exact angular position.[24]

The systems are alternately redundant. In the event of a failure of the S-band system, the telemetry and control signals can also be transmitted via the Ka band, and if the Ka band signals are subject to strong attenuation by the water droplets in the Earth's atmosphere during the hot and wet season, the payload data can also be transmitted via the S-band, but only with a data transfer rate of a maximum of 6 Mbit/s. Similar to a satellite navigation system, the time of arrival, i.e., a transit time measurement of the signals between the partners involved in communication, is used to determine their position in orbit or on the surface of the Moon with high accuracy.[10]

Scientific payloads

There are three scientific payloads on the spacecraft:[30][31]

  • Grid-based Energetic Neutral Atom imager (GENA): Images particle detector for neutral atoms for observing the terrestrial magnetosphere, especially the magnetotail.[30][31]
  • Extreme Ultraviolet Camera (EUC).[30][31]
  • Lunar Orbit VLBI EXperiment: The intention is to use the 4.2 m antenna as a radio telescope during the four hours the satellite spends over the Moon's north pole during each orbit. The satellite will be used in conjunction with terrestrial telescopes for long-base interferometry with a baseline of 400,000 km. The aim is not only to determine the position and composition of radio sources outside the Milky Way , but also as part of the Chinese deep space network, i.e, the position of spacecrafts such as the asteroid probe Tianwen-2. For use as a radio telescope, a cooled X-band receiver for the frequency range 8–9 GHz with a noise temperature of less than 50 K and four selectable bandwidths (64, 128, 256 and 512 MHz) is mounted on the antenna. In order to be able to accurately determine the transit time difference between the satellite and the terrestrial radio telescope for a given signal and thus calculate the position of the radio source or the spacecraft (the position of the satellite itself can be determined with an accuracy of 30 m), the satellite has an atomic clock with a maximum deviation of 10 −12 per second or 10 −14 per day. The receiver and clock together have a mass of 45 kg (99 lb) and have an average power consumption of 220 W.[30][31]

Mission

Queqiao-2 was launched on 20 March 2024 at 00:31 UTC by a Long March 8 rocket from the Wenchang Space Launch Site,[32][33] supporting China's upcoming Chang'e 6 and future 7 and 8 lunar missions scheduled for 2026 and 2028 respectively.[34][35] The upgraded Queqiao-2 entered lunar orbit on 24 March 2024 at 16:46 UTC,[36] where it is expected to operate for 8-10 years and by using a elliptical frozen orbit of 200 km × 16,000 km with an inclination of 62.4°,[5] instead of the L2 halo orbit.[37][38]

The initial mission of Queqiao-2 is to provide relay communication support for Chang'e 6. After Chang'e 6 completes its mission, it will adjust its orbit to provide services for Chang'e-7, Chang'e-8 and subsequent lunar exploration missions. In the future, Queqiao-2 will also work with Chang'e 7 and Chang'e 8 to build the International Lunar Research Station.[10]

Queqiao-2 also carries two smaller Deep Space Exploration Laboratory communication satellites, Tiandu-1 and Tiandu-2, to verify the technicality of the lunar communication and navigation constellation based on the Queqiao technology. After launch, the two satellites underwent lunar orbit insertion on 24 March 2024 at 17:43 UTC and entered a large elliptical orbit around the Moon (Tiandu-2 was attached to Tiandu-1 and separated in lunar orbit).[36] Both are equipped with a communications payload and first one has a laser passive retroreflector and a in-space router, with another has navigational devices.[39] In a large elliptical orbit around the moon, satellite-to-ground laser ranging are inter-satellite microwave ranging are to be carried out by these satellites via high-precision lunar orbit determination technology.[40][10][41]

Comparison of relay satellites

Here is a comparison of some of the key differences of the two lunar relay satellites:[1][11][42][43][44][5][6]

Queqiao Queqiao 2
Bus CAST 100 CAST 2000
Mass 449 kg (990 lb) 1,200 kg (2,600 lb)
Power Supply 4 solar panels, total 800 W 4 solar panels, total 1350 W
Accumulator 45 Ah 135 Ah
Orbit Earth-Moon L2 Halo orbit
at 65,000 km from Moon
Elliptical orbit around moon of
200 × 16,000 km at 62.4°
orbital period 14 days 24 hours
Line of sight of surface
probes
always every 20 in 24 hours
No. of surface probes
monitored
2 10
Antenna X-band parabolic antenna 4.2 m
S-band spiral antenna
X-band parabolic antenna 4.2 m
4 S-band omni-directional antennas
UHF omni-directional antenna
Ka-band parabolic antenna 0.6 m
Satellite to lunar surface
probes communication
X-Band 125 bit/s X-Band 1 kbit/s
Satellite to lunar surface
probes communication
X-Band 555 kbit/s X-Band 5 Mbit/s
Satellite to and fro
Earth communication
S-Band 4 Mbit/s Ka-Band 100 Mbit/s
Start of operation 2018 2024
End of operation 2026 (expected) 2034 (expected)

References

  1. ^ a b c d e Zhang, LiHua; Xiong, Liang; Sun, Ji; Gao, Shan; Wang, XiaoLei; Zhang, AiBing (2019-02-14). "Technical characteristics of the relay communication satellite "Queqiao" for Chang'e-4 lunar farside exploration mission". Scientia Sinica Technologica (in Chinese). 49 (2): 138–146. doi:10.1360/N092018-00375. ISSN 2095-946X. S2CID 88483165.
  2. ^ "China launches Queqiao-2 relay satellite to support moon missions". Space.com. Retrieved 20 March 2024.
  3. ^ "China launches Queqiao-2 relay satellite to support moon missions". Space.com. Retrieved 20 March 2024.
  4. ^ "China launches Queqiao-2 relay satellite to support moon missions". Space.com. Retrieved 20 March 2024.
  5. ^ a b c d e f Lihua Zhang (2024-03-20). "月亮之上"梦想绽放" 增强现实+AI生成技术揭秘鹊桥二号发射全程" (in Simplified Chinese). 央视网. Retrieved 2024-03-23.
  6. ^ a b 周文艳、高珊、刘德成、张相宇、马继楠、于登云 (2020). "月球极区探测轨道设计" (PDF). 深空探测学报. 7 (3): 250.
  7. ^ "鹊桥二号中继星成功实施近月制动 顺利进入环月轨道飞行" (in Simplified Chinese). 新华网. 2024-03-25. Retrieved 2024-03-25.
  8. ^ "微博". m.weibo.cn. Retrieved 2024-03-20.
  9. ^ "成功!". Weixin Official Accounts Platform. Retrieved 2024-03-20.
  10. ^ a b c d e Lihua, Zhang (2024-03-02). "Development and Prospect of Chinese Lunar Relay Communication Satellite". SPACE: SCIENCE & TECHNOLOGY.
  11. ^ a b c d e Wall, Mike (18 May 2018). "China Launching Relay Satellite Toward Moon's Far Side Sunday". Space.com. Archived from the original on 18 May 2018.
  12. ^ "Queqiao". NASA.
  13. ^ "嫦娥六号或明年5月发射 实现月球背面采样返回 | 联合早报". www.zaobao.com.sg (in Simplified Chinese). Retrieved 2024-03-20.
  14. ^ a b "Sina Visitor System". passport.weibo.com. Retrieved 2024-03-20.
  15. ^ "鹊桥二号中继星计划明年发射 --科技日报数字报". digitalpaper.stdaily.com. Retrieved 2024-03-20.
  16. ^ "嫦娥七号任务搭载机遇公告". www.cnsa.gov.cn. Retrieved 2024-03-20.
  17. ^ a b c "国家航天局:鹊桥二号2024年上半年发射-新华网". www.news.cn. Retrieved 2024-03-20.
  18. ^ "嫦娥七号设计再次改动,为搭载阿联酋月球车,将中继星挤下去了?_腾讯新闻". new.qq.com. Retrieved 2024-03-20.
  19. ^ "微博". m.weibo.cn. Retrieved 2024-03-20.
  20. ^ Lei, L. I. U.; Jianfeng, C. a. O.; Songjie, H. U.; Geshi, Tang (2015). "Maintenance of Relay Orbit About the Earth-Moon Collinear Libration Points" (PDF). Journal of Deep Space Exploration (in Chinese). 2 (4): 318–324. doi:10.15982/j.issn.2095-7777.2015.04.004. ISSN 2096-9287.
  21. ^ 周文艳; 高珊; 刘德成; 张相宇; 马继楠; 于登云 (2020). "月球极区探测轨道设计". 深空探测学报(中英文) (in Chinese). 7 (3): 248–254. doi:10.15982/j.issn.2095-7777.2020.20191109004. ISSN 2096-9287.
  22. ^ "China Academy of Space Technology". www.cast.cn. Retrieved 2024-03-20.
  23. ^ a b Wu, Weiren; Tang, Yuhua; Zhang, Lihua; Qiao, Dong (2017-12-12). "Design of communication relay mission for supporting lunar-farside soft landing". Science China Information Sciences. 61 (4): 040305. doi:10.1007/s11432-017-9202-1. ISSN 1869-1919. S2CID 22442636.
  24. ^ a b c Jones, Andrew (2023-10-17). "China to launch Queqiao-2 moon relay satellite in early 2024". SpaceNews. Retrieved 2024-03-20.
  25. ^ a b "微博". m.weibo.cn. Retrieved 2024-03-20.
  26. ^ Emily Lakdawalla (14 January 2016). "Updates on China's lunar missions". The Planetary Society. Archived from the original on 17 April 2016. Retrieved 24 April 2016.
  27. ^ Jones, Andrew (24 April 2018). "Chang'e-4 lunar far side satellite named 'magpie bridge' from folklore tale of lovers crossing the Milky Way". GBTimes. Archived from the original on 24 April 2018. Retrieved 28 April 2018.
  28. ^ Future Chinese Lunar Missions: Chang'e 4 - Farside Lander and Rover. David R. Williams, NASA Goddard Space Flight Center. 7 December 2018.
  29. ^ "鹊桥号发射成功 将成为世界首颗连通地月中继卫星". 2018-05-21. Archived from the original on 2018-05-27. Retrieved 2018-05-26.
  30. ^ a b c d "中国探月与深空探测网 - 通知公告". www.clep.org.cn. Retrieved 2024-03-20.
  31. ^ a b c d "NASA - NSSDCA - Spacecraft - Details". nssdc.gsfc.nasa.gov. Retrieved 2024-03-20.
  32. ^ "China launches Queqiao-2 relay satellite to support moon missions". Space.com. Retrieved 20 March 2024.
  33. ^ "我国成功发射鹊桥二号中继星-新华网". hq.news.cn. Retrieved 2024-03-20.
  34. ^ "探月工程四期中继星运抵海南文昌-新华网". www.news.cn. Retrieved 2024-03-20.
  35. ^ "鹊桥二号中继星任务星箭组合体垂直转运至发射区-新华网". www.news.cn. Retrieved 2024-03-20.
  36. ^ a b Jones, Andrew (2024-03-25). "China's Queqiao-2 relay satellite enters lunar orbit". SpaceNews. Retrieved 2024-03-26.
  37. ^ Jones, Andrew (23 January 2023). "China to launch relay satellite next year to support moon landing missions". SpaceNews.
  38. ^ "Queqiao 2". Space.skyrocket.de. 12 March 2024.
  39. ^ "China launches relay satellite to allow communication with far side of the moon". South China Morning Post. 2024-03-20. Retrieved 2024-03-20.
  40. ^ Jones, Andrew (10 May 2023). "China to launch communications relay satellite to the moon in early 2024". Space.com.
  41. ^ "我国将发射"天都一号""天都二号"探月卫星-新华网". www.news.cn. Retrieved 2024-03-20.
  42. ^ "Queqiao". NASA.
  43. ^ "嫦娥六号或明年5月发射 实现月球背面采样返回 | 联合早报". www.zaobao.com.sg (in Simplified Chinese). Retrieved 2024-03-20.
  44. ^ "Sina Visitor System". passport.weibo.com. Retrieved 2024-03-20.
  • v
  • t
  • e
Exploration
programsActive
missions
Orbiters
Landers
Rovers
Flybys
Past
missions
Crewed landings
Orbiters
Impactors
Landers
Rovers
Sample return
Failed landings
Flybys
Planned
missions
Artemis
CLPS
Luna-Glob
CLEP
Others
Proposed
missions
Robotic
Crewed
Cancelled /
conceptsRelated
  • Missions are ordered by launch date. Crewed missions are in italics.
  • v
  • t
  • e
Missions
Launch vehicles
Facilities
People
  • Category
  • Commons
  • v
  • t
  • e
Earth observation
Communication and engineering
Data relay satellite system
Satellite navigation system
Astronomical observation
Lunar exploration
Planetary exploration
Microsatellites
  • Fengniao
  • Xinyan
Future spacecraft in italics.
  • v
  • t
  • e
Spaceports and landing sites
Launch vehicles
Exploration programs
  • Shuguang (cancelled)
  • CMS (human spaceflight)
  • Chang'e (lunar exploration)
  • Tiangong (space station)
  • Tianwen (interplanetary exploration)
Projects and missions
Science
Planetary science
Astronomy and
cosmology
Earth observation
Human
spaceflight
Uncrewed expeditions
Crewed expeditions
Space laboratories and cargos
Tiangong space station modules
Navigation
Telecommunications
Technology
demonstrators
Related
  • Lanyue Lunar Lander
  • Future missions marked in italics. Failed missions marked with † sign
  • v
  • t
  • e
Operating
Radio and Microwave
Infrared
  • James Webb (since 2022)
  • Odin (since 2001)
  • SOLAR (since 2008)
  • WISE (since 2009)
Optical
  • Aoi (since 2018)
  • Astrosat (since 2015)
  • BRITE constellation (since 2013)
  • CHASE (since 2021)
  • CHEOPS (since 2019)
  • DSCOVR (since 2015)
  • Euclid (since 2023)
  • Hayabusa2 (since 2021)
  • Gaia (since 2013)
  • HiRISE (since 2005)
  • Hubble (since 1990)
  • Hinode (Solar-B) (since 2006)
  • NEOSSat (since 2013)
  • Odin (since 2001)
  • SDO (since 2010)
  • SOHO (since 1995)
  • SOLAR (since 2008)
  • Swift (since 2004)
  • TESS (since 2018)
Ultraviolet
X-ray and Gamma-ray
Other (particle
or unclassified)
Planned
Proposed
Retired
Hibernating
(Mission completed)
Lost/Failed
Cancelled
Related
  • Category:Space telescopes
  • v
  • t
  • e
21st-century space probes
Active space probes
(deep space missions)
Sun
Moon
Mars
Other planets
Minor planets
Interstellar space
Completed after 2000
(by termination date)
2000s
2010s
2020s
  • v
  • t
  • e
Orbital launches in 2024
January
February
March
Launches are separated by dots ( • ), payloads by commas ( , ), multiple names for the same satellite by slashes ( / ). Cubesats are smaller.
Crewed flights are underlined. Launch failures are marked with the † sign. Payloads deployed from other spacecraft are (enclosed in parentheses).
  • v
  • t
  • e
2024 in space
  • « 2023
    2025 »
Space probe launches Space probes launched in 2024
Impact events
  • 2024 BX1
Selected NEOs
Discoveries
Comets Comets in 2024
  •  Outer space portal
  • Category:2023 in outer space — Category:2024 in outer space — Category:2025 in outer space
Portals:
  •  Astronomy
  • icon Stars
  •  Spaceflight
  •  Solar System
  • icon Science