Quotient rule

Formula for the derivative of a ratio of functions
Part of a series of articles about
Calculus
a b f ( t ) d t = f ( b ) f ( a ) {\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}
  • Rolle's theorem
  • Mean value theorem
  • Inverse function theorem
Differential
Definitions
Concepts
  • Differentiation notation
  • Second derivative
  • Implicit differentiation
  • Logarithmic differentiation
  • Related rates
  • Taylor's theorem
Rules and identities
  • v
  • t
  • e

In calculus, the quotient rule is a method of finding the derivative of a function that is the ratio of two differentiable functions.[1][2][3] Let h ( x ) = f ( x ) g ( x ) {\displaystyle h(x)={\frac {f(x)}{g(x)}}} , where both f and g are differentiable and g ( x ) 0. {\displaystyle g(x)\neq 0.} The quotient rule states that the derivative of h(x) is

h ( x ) = f ( x ) g ( x ) f ( x ) g ( x ) ( g ( x ) ) 2 . {\displaystyle h'(x)={\frac {f'(x)g(x)-f(x)g'(x)}{(g(x))^{2}}}.}

It is provable in many ways by using other derivative rules.

Examples

Example 1: Basic example

Given h ( x ) = e x x 2 {\displaystyle h(x)={\frac {e^{x}}{x^{2}}}} , let f ( x ) = e x , g ( x ) = x 2 {\displaystyle f(x)=e^{x},g(x)=x^{2}} , then using the quotient rule:

d d x ( e x x 2 ) = ( d d x e x ) ( x 2 ) ( e x ) ( d d x x 2 ) ( x 2 ) 2 = ( e x ) ( x 2 ) ( e x ) ( 2 x ) x 4 = x 2 e x 2 x e x x 4 = x e x 2 e x x 3 = e x ( x 2 ) x 3 . {\displaystyle {\begin{aligned}{\frac {d}{dx}}\left({\frac {e^{x}}{x^{2}}}\right)&={\frac {\left({\frac {d}{dx}}e^{x}\right)(x^{2})-(e^{x})\left({\frac {d}{dx}}x^{2}\right)}{(x^{2})^{2}}}\\&={\frac {(e^{x})(x^{2})-(e^{x})(2x)}{x^{4}}}\\&={\frac {x^{2}e^{x}-2xe^{x}}{x^{4}}}\\&={\frac {xe^{x}-2e^{x}}{x^{3}}}\\&={\frac {e^{x}(x-2)}{x^{3}}}.\end{aligned}}}

Example 2: Derivative of tangent function

The quotient rule can be used to find the derivative of tan x = sin x cos x {\displaystyle \tan x={\frac {\sin x}{\cos x}}} as follows:

d d x tan x = d d x ( sin x cos x ) = ( d d x sin x ) ( cos x ) ( sin x ) ( d d x cos x ) cos 2 x = ( cos x ) ( cos x ) ( sin x ) ( sin x ) cos 2 x = cos 2 x + sin 2 x cos 2 x = 1 cos 2 x = sec 2 x . {\displaystyle {\begin{aligned}{\frac {d}{dx}}\tan x&={\frac {d}{dx}}\left({\frac {\sin x}{\cos x}}\right)\\&={\frac {\left({\frac {d}{dx}}\sin x\right)(\cos x)-(\sin x)\left({\frac {d}{dx}}\cos x\right)}{\cos ^{2}x}}\\&={\frac {(\cos x)(\cos x)-(\sin x)(-\sin x)}{\cos ^{2}x}}\\&={\frac {\cos ^{2}x+\sin ^{2}x}{\cos ^{2}x}}\\&={\frac {1}{\cos ^{2}x}}=\sec ^{2}x.\end{aligned}}}

Reciprocal rule

The reciprocal rule is a special case of the quotient rule in which the numerator f ( x ) = 1 {\displaystyle f(x)=1} . Applying the quotient rule gives

h ( x ) = d d x [ 1 g ( x ) ] = 0 g ( x ) 1 g ( x ) g ( x ) 2 = g ( x ) g ( x ) 2 . {\displaystyle h'(x)={\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right]={\frac {0\cdot g(x)-1\cdot g'(x)}{g(x)^{2}}}={\frac {-g'(x)}{g(x)^{2}}}.}

Utilizing the chain rule yields the same result.

Proofs

Proof from derivative definition and limit properties

Let h ( x ) = f ( x ) g ( x ) . {\displaystyle h(x)={\frac {f(x)}{g(x)}}.} Applying the definition of the derivative and properties of limits gives the following proof, with the term f ( x ) g ( x ) {\displaystyle f(x)g(x)} added and subtracted to allow splitting and factoring in subsequent steps without affecting the value:

h ( x ) = lim k 0 h ( x + k ) h ( x ) k = lim k 0 f ( x + k ) g ( x + k ) f ( x ) g ( x ) k = lim k 0 f ( x + k ) g ( x ) f ( x ) g ( x + k ) k g ( x ) g ( x + k ) = lim k 0 f ( x + k ) g ( x ) f ( x ) g ( x + k ) k lim k 0 1 g ( x ) g ( x + k ) = lim k 0 [ f ( x + k ) g ( x ) f ( x ) g ( x ) + f ( x ) g ( x ) f ( x ) g ( x + k ) k ] 1 g ( x ) 2 = [ lim k 0 f ( x + k ) g ( x ) f ( x ) g ( x ) k lim k 0 f ( x ) g ( x + k ) f ( x ) g ( x ) k ] 1 g ( x ) 2 = [ lim k 0 f ( x + k ) f ( x ) k g ( x ) f ( x ) lim k 0 g ( x + k ) g ( x ) k ] 1 g ( x ) 2 = f ( x ) g ( x ) f ( x ) g ( x ) g ( x ) 2 . {\displaystyle {\begin{aligned}h'(x)&=\lim _{k\to 0}{\frac {h(x+k)-h(x)}{k}}\\&=\lim _{k\to 0}{\frac {{\frac {f(x+k)}{g(x+k)}}-{\frac {f(x)}{g(x)}}}{k}}\\&=\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x+k)}{k\cdot g(x)g(x+k)}}\\&=\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x+k)}{k}}\cdot \lim _{k\to 0}{\frac {1}{g(x)g(x+k)}}\\&=\lim _{k\to 0}\left[{\frac {f(x+k)g(x)-f(x)g(x)+f(x)g(x)-f(x)g(x+k)}{k}}\right]\cdot {\frac {1}{g(x)^{2}}}\\&=\left[\lim _{k\to 0}{\frac {f(x+k)g(x)-f(x)g(x)}{k}}-\lim _{k\to 0}{\frac {f(x)g(x+k)-f(x)g(x)}{k}}\right]\cdot {\frac {1}{g(x)^{2}}}\\&=\left[\lim _{k\to 0}{\frac {f(x+k)-f(x)}{k}}\cdot g(x)-f(x)\cdot \lim _{k\to 0}{\frac {g(x+k)-g(x)}{k}}\right]\cdot {\frac {1}{g(x)^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}}.\end{aligned}}}
The limit evaluation lim k 0 1 g ( x + k ) g ( x ) = 1 g ( x ) 2 {\displaystyle \lim _{k\to 0}{\frac {1}{g(x+k)g(x)}}={\frac {1}{g(x)^{2}}}} is justified by the differentiability of g ( x ) {\displaystyle g(x)} , implying continuity, which can be expressed as lim k 0 g ( x + k ) = g ( x ) {\displaystyle \lim _{k\to 0}g(x+k)=g(x)} .

Proof using implicit differentiation

Let h ( x ) = f ( x ) g ( x ) , {\displaystyle h(x)={\frac {f(x)}{g(x)}},} so that f ( x ) = g ( x ) h ( x ) . {\displaystyle f(x)=g(x)h(x).}

The product rule then gives f ( x ) = g ( x ) h ( x ) + g ( x ) h ( x ) . {\displaystyle f'(x)=g'(x)h(x)+g(x)h'(x).}

Solving for h ( x ) {\displaystyle h'(x)} and substituting back for h ( x ) {\displaystyle h(x)} gives:

h ( x ) = f ( x ) g ( x ) h ( x ) g ( x ) = f ( x ) g ( x ) f ( x ) g ( x ) g ( x ) = f ( x ) g ( x ) f ( x ) g ( x ) g ( x ) 2 . {\displaystyle {\begin{aligned}h'(x)&={\frac {f'(x)-g'(x)h(x)}{g(x)}}\\&={\frac {f'(x)-g'(x)\cdot {\frac {f(x)}{g(x)}}}{g(x)}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}}.\end{aligned}}}

Proof using the reciprocal rule or chain rule

Let h ( x ) = f ( x ) g ( x ) = f ( x ) 1 g ( x ) . {\displaystyle h(x)={\frac {f(x)}{g(x)}}=f(x)\cdot {\frac {1}{g(x)}}.}

Then the product rule gives h ( x ) = f ( x ) 1 g ( x ) + f ( x ) d d x [ 1 g ( x ) ] . {\displaystyle h'(x)=f'(x)\cdot {\frac {1}{g(x)}}+f(x)\cdot {\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right].}

To evaluate the derivative in the second term, apply the reciprocal rule, or the power rule along with the chain rule:

d d x [ 1 g ( x ) ] = 1 g ( x ) 2 g ( x ) = g ( x ) g ( x ) 2 . {\displaystyle {\frac {d}{dx}}\left[{\frac {1}{g(x)}}\right]=-{\frac {1}{g(x)^{2}}}\cdot g'(x)={\frac {-g'(x)}{g(x)^{2}}}.}

Substituting the result into the expression gives

h ( x ) = f ( x ) 1 g ( x ) + f ( x ) [ g ( x ) g ( x ) 2 ] = f ( x ) g ( x ) f ( x ) g ( x ) g ( x ) 2 = g ( x ) g ( x ) f ( x ) g ( x ) f ( x ) g ( x ) g ( x ) 2 = f ( x ) g ( x ) f ( x ) g ( x ) g ( x ) 2 . {\displaystyle {\begin{aligned}h'(x)&=f'(x)\cdot {\frac {1}{g(x)}}+f(x)\cdot \left[{\frac {-g'(x)}{g(x)^{2}}}\right]\\&={\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {g(x)}{g(x)}}\cdot {\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}}.\end{aligned}}}

Proof by logarithmic differentiation

Let h ( x ) = f ( x ) g ( x ) . {\displaystyle h(x)={\frac {f(x)}{g(x)}}.} Taking the absolute value and natural logarithm of both sides of the equation gives

ln | h ( x ) | = ln | f ( x ) g ( x ) | {\displaystyle \ln |h(x)|=\ln \left|{\frac {f(x)}{g(x)}}\right|}

Applying properties of the absolute value and logarithms,

ln | h ( x ) | = ln | f ( x ) | ln | g ( x ) | {\displaystyle \ln |h(x)|=\ln |f(x)|-\ln |g(x)|}

Taking the logarithmic derivative of both sides,

h ( x ) h ( x ) = f ( x ) f ( x ) g ( x ) g ( x ) {\displaystyle {\frac {h'(x)}{h(x)}}={\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}}

Solving for h ( x ) {\displaystyle h'(x)} and substituting back f ( x ) g ( x ) {\displaystyle {\tfrac {f(x)}{g(x)}}} for h ( x ) {\displaystyle h(x)} gives:

h ( x ) = h ( x ) [ f ( x ) f ( x ) g ( x ) g ( x ) ] = f ( x ) g ( x ) [ f ( x ) f ( x ) g ( x ) g ( x ) ] = f ( x ) g ( x ) f ( x ) g ( x ) g ( x ) 2 = f ( x ) g ( x ) f ( x ) g ( x ) g ( x ) 2 . {\displaystyle {\begin{aligned}h'(x)&=h(x)\left[{\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}\right]\\&={\frac {f(x)}{g(x)}}\left[{\frac {f'(x)}{f(x)}}-{\frac {g'(x)}{g(x)}}\right]\\&={\frac {f'(x)}{g(x)}}-{\frac {f(x)g'(x)}{g(x)^{2}}}\\&={\frac {f'(x)g(x)-f(x)g'(x)}{g(x)^{2}}}.\end{aligned}}}

Taking the absolute value of the functions is necessary for the logarithmic differentiation of functions that may have negative values, as logarithms are only real-valued for positive arguments. This works because d d x ( ln | u | ) = u u {\displaystyle {\tfrac {d}{dx}}(\ln |u|)={\tfrac {u'}{u}}} , which justifies taking the absolute value of the functions for logarithmic differentiation.

Higher order derivatives

Implicit differentiation can be used to compute the nth derivative of a quotient (partially in terms of its first n − 1 derivatives). For example, differentiating f = g h {\displaystyle f=gh} twice (resulting in f = g h + 2 g h + g h {\displaystyle f''=g''h+2g'h'+gh''} ) and then solving for h {\displaystyle h''} yields

h = ( f g ) = f g h 2 g h g . {\displaystyle h''=\left({\frac {f}{g}}\right)''={\frac {f''-g''h-2g'h'}{g}}.}

See also

References

  1. ^ Stewart, James (2008). Calculus: Early Transcendentals (6th ed.). Brooks/Cole. ISBN 978-0-495-01166-8.
  2. ^ Larson, Ron; Edwards, Bruce H. (2009). Calculus (9th ed.). Brooks/Cole. ISBN 978-0-547-16702-2.
  3. ^ Thomas, George B.; Weir, Maurice D.; Hass, Joel (2010). Thomas' Calculus: Early Transcendentals (12th ed.). Addison-Wesley. ISBN 978-0-321-58876-0.
  • v
  • t
  • e
Precalcus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Miscellaneous topics