RAR-related orphan receptor

Members of the nuclear receptor family of intracellular transcription factors
RAR-related orphan receptor A (alpha)
Identifiers
SymbolRORA
Alt. symbolsRZRA, ROR1, ROR2, ROR3, NR1F1
NCBI gene6095
HGNC10258
OMIM600825
PDB1N83
RefSeqNM_002943
UniProtP35398
Other data
LocusChr. 15 q21-q22
Search for
StructuresSwiss-model
DomainsInterPro
RAR-related orphan receptor B (beta)
Identifiers
SymbolRORB
Alt. symbolsRZRB, NR1F2, ROR-BETA
NCBI gene6096
HGNC10259
OMIM601972
PDB1NQ7
RefSeqNM_006914
UniProtQ92753
Other data
LocusChr. 9 q22
Search for
StructuresSwiss-model
DomainsInterPro
RAR-related orphan receptor C (gamma)
Identifiers
SymbolRORC
Alt. symbolsRZRG, RORG, NR1F3, TOR
NCBI gene6097
HGNC10260
OMIM602943
RefSeqNM_005060
UniProtP51449
Other data
LocusChr. 1 q21
Search for
StructuresSwiss-model
DomainsInterPro

The RAR-related orphan receptors (RORs) are members of the nuclear receptor family of intracellular transcription factors.[1][2] There are three forms of ROR, ROR-α, , and and each is encoded by a separate gene, RORA, RORB, and RORC respectively. The RORs are somewhat unusual in that they appear to bind as monomers to hormone response elements as opposed to the majority of other nuclear receptors which bind as dimers.[3] They bind to DNA elements called ROR response elements (RORE).[4]

Ligands

While the identity of natural ligands for the RORs remains controversial, similar to the liver X receptors (LXRs), it appears that the RORs are activated by oxysterols.[5][6] Furthermore, the RORs appear to be constitutively active (absence of ligand) and that activity may be due to continuously bound natural ligands.[5] Side chain oxygenated sterols (e.g., 20α-hydroxycholesterol, 22R-hydroxycholesterol, and 25-hydroxycholesterol) are high affinity RORγ agonists[7] while sterols oxygenated at the 7-position, (e.g., (7-hydroxycholesterol and 7-ketocholesterol) function as inverse agonists for both RORa and RORγ.[5] A number of other natural substances have also been reported to bind to the RORs. These include all-trans retinoic acid binds with high affinity to ROR-β and -γ but not ROR-α.[8] Finally the RORs may function as lipid sensors and hence may play a role in the regulation of lipid metabolism.[5]

Melatonin has been claimed to be an endogenous ligand for ROR-α while CGP 52608 has been identified as a ROR-α selective synthetic ligand.[9]

Tissue distribution

RORα, RORβ, and RORγ are primarily expressed the following tissues:[7]

  • ROR-α – widely expressed in liver, skeletal muscle, skin, lung, adipose tissue, kidney, thymus, and brain.
  • ROR-β – expression restricted to the brain and retina.
  • ROR-γ – highly expressed in thymus (the thymus-specific isoform is referred to as RORγt), muscle, testis, pancreas, prostate, heart, and liver.

Function

The three forms of RORs fulfill a number of critical roles[10] including:

As drug targets

A number of synthetic RORγt inverse agonists are in various stages of drug development for the treatment of inflammatory diseases. RORγt agonists have also been proposed for use as immunooncology agents to activate the immune system to treat cancer.[13][14]

See also

References

  1. ^ Giguère V, Tini M, Flock G, Ong E, Evans RM, Otulakowski G (March 1994). "Isoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors". Genes & Development. 8 (5): 538–53. doi:10.1101/gad.8.5.538. PMID 7926749.
  2. ^ Hirose T, Smith RJ, Jetten AM (December 1994). "ROR gamma: the third member of ROR/RZR orphan receptor subfamily that is highly expressed in skeletal muscle". Biochemical and Biophysical Research Communications. 205 (3): 1976–83. doi:10.1006/bbrc.1994.2902. PMID 7811290.
  3. ^ Jetten AM, Kurebayashi S, Ueda E (2001). The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. Progress in Nucleic Acid Research and Molecular Biology. Vol. 69. pp. 205–47. doi:10.1016/S0079-6603(01)69048-2. ISBN 978-0-12-540069-5. PMID 11550795.
  4. ^ Jetten, A. M.; Kurebayashi, S.; Ueda, E. (2001). "The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes". Progress in Nucleic Acid Research and Molecular Biology. 69: 205–247. doi:10.1016/s0079-6603(01)69048-2. ISBN 9780125400695. ISSN 0079-6603. PMID 11550795.
  5. ^ a b c d e Solt LA, Burris TP (December 2012). "Action of RORs and their ligands in (patho)physiology". Trends in Endocrinology and Metabolism. 23 (12): 619–27. doi:10.1016/j.tem.2012.05.012. PMC 3500583. PMID 22789990.
  6. ^ Santori FR (2015). "Nuclear hormone receptors put immunity on sterols". European Journal of Immunology. 45 (10): 2730–41. doi:10.1002/eji.201545712. PMC 4651655. PMID 26222181.
  7. ^ a b Zhang Y, Luo XY, Wu DH, Xu Y (January 2015). "ROR nuclear receptors: structures, related diseases, and drug discovery". Acta Pharmacologica Sinica. 36 (1): 71–87. doi:10.1038/aps.2014.120. PMC 4571318. PMID 25500868.
  8. ^ Stehlin-Gaon C, Willmann D, Zeyer D, Sanglier S, Van Dorsselaer A, Renaud JP, Moras D, Schüle R (October 2003). "All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta". Nature Structural Biology. 10 (10): 820–5. doi:10.1038/nsb979. PMID 12958591. S2CID 10108247.
  9. ^ Wiesenberg I, Missbach M, Kahlen JP, Schräder M, Carlberg C (February 1995). "Transcriptional activation of the nuclear receptor RZR alpha by the pineal gland hormone melatonin and identification of CGP 52608 as a synthetic ligand". Nucleic Acids Research. 23 (3): 327–33. doi:10.1093/nar/23.3.327. PMC 306679. PMID 7885826.
  10. ^ Jetten AM (December 2004). "Recent advances in the mechanisms of action and physiological functions of the retinoid-related orphan receptors (RORs)". Current Drug Targets. Inflammation and Allergy. 3 (4): 395–412. doi:10.2174/1568010042634497. PMID 15584888.
  11. ^ Jetten AM, Joo JH (2006). "Retinoid-related Orphan Receptors (RORs): Roles in Cellular Differentiation and Development". Advances in Developmental Biology (Amsterdam, Netherlands). Advances in Developmental Biology. 16: 313–355. doi:10.1016/S1574-3349(06)16010-X. ISBN 9780444528735. PMC 2312092. PMID 18418469.
  12. ^ Feng S, Xu S, Wen Z, Zhu Y (2015). "Retinoic acid-related orphan receptor RORβ, circadian rhythm abnormalities and tumorigenesis (Review)". International Journal of Molecular Medicine. 35 (6): 1493–500. doi:10.3892/ijmm.2015.2155. PMID 25816151.
  13. ^ Cyr P, Bronner SM, Crawford JJ (2016). "Recent progress on nuclear receptor RORγ modulators". Bioorganic & Medicinal Chemistry Letters. 26 (18): 4387–93. doi:10.1016/j.bmcl.2016.08.012. PMID 27542308.
  14. ^ Bronner SM, Zbieg JR, Crawford JJ (2017). "RORγ antagonists and inverse agonists: a patent review". Expert Opinion on Therapeutic Patents. 27 (1): 101–112. doi:10.1080/13543776.2017.1236918. PMID 27629281. S2CID 27177212.

Further reading

  • Solt LA, Griffin PR, Burris TP (June 2010). "Ligand regulation of retinoic acid receptor-related orphan receptors: implications for development of novel therapeutics". Current Opinion in Lipidology. 21 (3): 204–11. doi:10.1097/MOL.0b013e328338ca18. PMC 5024716. PMID 20463469.
  • Chang MR, Rosen H, Griffin PR (2014). "RORs in Autoimmune Disease". Sphingosine-1-Phosphate Signaling in Immunology and Infectious Diseases. Current Topics in Microbiology and Immunology. Vol. 378. pp. 171–82. doi:10.1007/978-3-319-05879-5_8. ISBN 978-3-319-05878-8. PMID 24728598.

External links

  • v
  • t
  • e
(1) Basic domains
(1.1) Basic leucine zipper (bZIP)
(1.2) Basic helix-loop-helix (bHLH)
Group A
Group B
Group C
bHLH-PAS
Group D
Group E
Group F
bHLH-COE
(1.3) bHLH-ZIP
(1.4) NF-1
(1.5) RF-X
(1.6) Basic helix-span-helix (bHSH)
(2) Zinc finger DNA-binding domains
(2.1) Nuclear receptor (Cys4)
subfamily 1
subfamily 2
subfamily 3
subfamily 4
subfamily 5
subfamily 6
subfamily 0
(2.2) Other Cys4
(2.3) Cys2His2
(2.4) Cys6
(2.5) Alternating composition
(2.6) WRKY
(3) Helix-turn-helix domains
(3.1) Homeodomain
Antennapedia
ANTP class
protoHOX
Hox-like
metaHOX
NK-like
other
(3.2) Paired box
(3.3) Fork head / winged helix
(3.4) Heat shock factors
(3.5) Tryptophan clusters
(3.6) TEA domain
  • transcriptional enhancer factor
(4) β-Scaffold factors with minor groove contacts
(4.1) Rel homology region
(4.2) STAT
(4.3) p53-like
(4.4) MADS box
(4.6) TATA-binding proteins
(4.7) High-mobility group
(4.9) Grainyhead
(4.10) Cold-shock domain
(4.11) Runt
(0) Other transcription factors
(0.2) HMGI(Y)
(0.3) Pocket domain
(0.5) AP-2/EREBP-related factors
(0.6) Miscellaneous
see also transcription factor/coregulator deficiencies
  • v
  • t
  • e
Amino acids and
similar/related
  • Amino acids and related: GABA receptor modulators
  • GABAA receptor positive modulators
  • GABA metabolism and transport modulators
  • GHB receptor modulators
  • Glutamate metabolism and transport modulators
  • Glycine receptor modulators
  • Ionotropic glutamate receptor modulators
  • Metabotropic glutamate receptor modulators
  • Monoamines: Adrenergic receptor modulators
  • Dopamine receptor modulators
  • Histamine receptor modulators
  • Melatonin receptor modulators
  • Monoamine metabolism modulators
  • Monoamine neurotoxins
  • Monoamine releasing agents
  • Monoamine reuptake inhibitors
  • Serotonin receptor modulators
  • hTAAR modulators
  • Acetylcholine: Acetylcholine metabolism and transport modulators
  • Muscarinic acetylcholine receptor modulators
  • Nicotinic acetylcholine receptor modulators
  • Others: Imidazoline receptor modulators
  • Purine receptor modulators
  • Sigma receptor modulators
  • Thyroid hormone receptor modulators
Lipids
  • Eicosanoids: Cannabinoid receptor modulators
  • Leukotriene signaling modulators
  • Prostanoid signaling modulators
  • Phospholipids: Lysophospholipid signaling modulators
  • PAF receptor modulators
  • Steroids: Androgen receptor modulators
  • Estrogen receptor modulators
  • Glucocorticoid receptor modulators
  • Mineralocorticoid receptor modulators
  • Progesterone receptor modulators
  • Steroid metabolism modulators
  • Other nuclear receptors: Aryl hydrocarbon receptor modulators
  • Estrogen-related receptor modulators
  • FXR and LXR modulators
  • PPAR modulators
  • Retinoid receptor modulators
  • Vitamin D receptor modulators
  • Xenobiotic-sensing receptor modulators
Peptides/proteins
  • Peptides: Angiotensin receptor modulators
  • GH/IGF-1 axis signaling modulators
  • GnRH and gonadotropin receptor modulators
  • Melanocortin receptor modulators
  • Neurokinin receptor modulators
  • Opioid receptor modulators
  • Oxytocin and vasopressin receptor modulators
  • Cytokines: Cytokine receptor modulators
  • Chemokine receptor modulators
  • Interleukin receptor modulators
  • TNF receptor superfamily modulators
  • Growth factors: Growth factor receptor modulators
  • TGFβ receptor superfamily modulators
Others and
non-receptor
  • Ion channels: Ion channel modulators
  • TRP channel modulators
  • Transporters: Sodium-glucose transporter modulators
  • Symporter inhibitors
  • Others: Nitric oxide signaling modulators
Stub icon

This article about a biochemical receptor is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e