Ring of integers

Algebraic structure → Ring theory
Ring theory
Basic concepts
Rings
• Subrings
• Ideal
• Quotient ring
• Fractional ideal
Total ring of fractions
• Product of rings
• Free product of associative algebras
Tensor product of algebras

Ring homomorphisms

• Kernel
Inner automorphism
• Frobenius endomorphism

Algebraic structures

• Module
• Associative algebra
• Graded ring
• Involutive ring
• Category of rings
• Initial ring Z {\displaystyle \mathbb {Z} }
• Terminal ring 0 = Z / 1 Z {\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }

Related structures

• Field
• Finite field
Non-associative ring
Lie ring
Jordan ring
Semiring
Semifield
Commutative rings
Integral domain
Integrally closed domain
GCD domain
Unique factorization domain
Principal ideal domain
Euclidean domain
• Field
Finite field
Composition ring
Polynomial ring
Formal power series ring

Algebraic number theory

Algebraic number field
• Ring of integers
Algebraic independence
Transcendental number theory
Transcendence degree

p-adic number theory and decimals

Direct limit/Inverse limit
Zero ring Z / 1 Z {\displaystyle \mathbb {Z} /1\mathbb {Z} }
• Integers modulo pn Z / p n Z {\displaystyle \mathbb {Z} /p^{n}\mathbb {Z} }
• Prüfer p-ring Z ( p ) {\displaystyle \mathbb {Z} (p^{\infty })}
Base-p circle ring T {\displaystyle \mathbb {T} }
Base-p integers Z {\displaystyle \mathbb {Z} }
p-adic rationals Z [ 1 / p ] {\displaystyle \mathbb {Z} [1/p]}
Base-p real numbers R {\displaystyle \mathbb {R} }
p-adic integers Z p {\displaystyle \mathbb {Z} _{p}}
p-adic numbers Q p {\displaystyle \mathbb {Q} _{p}}
p-adic solenoid T p {\displaystyle \mathbb {T} _{p}}

Algebraic geometry

Affine variety
  • v
  • t
  • e

In mathematics, the ring of integers of an algebraic number field K {\displaystyle K} is the ring of all algebraic integers contained in K {\displaystyle K} .[1] An algebraic integer is a root of a monic polynomial with integer coefficients: x n + c n 1 x n 1 + + c 0 {\displaystyle x^{n}+c_{n-1}x^{n-1}+\cdots +c_{0}} .[2] This ring is often denoted by O K {\displaystyle O_{K}} or O K {\displaystyle {\mathcal {O}}_{K}} . Since any integer belongs to K {\displaystyle K} and is an integral element of K {\displaystyle K} , the ring Z {\displaystyle \mathbb {Z} } is always a subring of O K {\displaystyle O_{K}} .

The ring of integers Z {\displaystyle \mathbb {Z} } is the simplest possible ring of integers.[a] Namely, Z = O Q {\displaystyle \mathbb {Z} =O_{\mathbb {Q} }} where Q {\displaystyle \mathbb {Q} } is the field of rational numbers.[3] And indeed, in algebraic number theory the elements of Z {\displaystyle \mathbb {Z} } are often called the "rational integers" because of this.

The next simplest example is the ring of Gaussian integers Z [ i ] {\displaystyle \mathbb {Z} [i]} , consisting of complex numbers whose real and imaginary parts are integers. It is the ring of integers in the number field Q ( i ) {\displaystyle \mathbb {Q} (i)} of Gaussian rationals, consisting of complex numbers whose real and imaginary parts are rational numbers. Like the rational integers, Z [ i ] {\displaystyle \mathbb {Z} [i]} is a Euclidean domain.

The ring of integers of an algebraic number field is the unique maximal order in the field. It is always a Dedekind domain.[4]

Properties

The ring of integers OK is a finitely-generated Z-module. Indeed, it is a free Z-module, and thus has an integral basis, that is a basis b1, ..., bn ∈ OK of the Q-vector space K such that each element x in OK can be uniquely represented as

x = i = 1 n a i b i , {\displaystyle x=\sum _{i=1}^{n}a_{i}b_{i},}

with aiZ.[5] The rank n of OK as a free Z-module is equal to the degree of K over Q.

Examples

Computational tool

A useful tool for computing the integral closure of the ring of integers in an algebraic field K/Q is the discriminant. If K is of degree n over Q, and α 1 , , α n O K {\displaystyle \alpha _{1},\ldots ,\alpha _{n}\in {\mathcal {O}}_{K}} form a basis of K over Q, set d = Δ K / Q ( α 1 , , α n ) {\displaystyle d=\Delta _{K/\mathbb {Q} }(\alpha _{1},\ldots ,\alpha _{n})} . Then, O K {\displaystyle {\mathcal {O}}_{K}} is a submodule of the Z-module spanned by α 1 / d , , α n / d {\displaystyle \alpha _{1}/d,\ldots ,\alpha _{n}/d} .[6] pg. 33 In fact, if d is square-free, then α 1 , , α n {\displaystyle \alpha _{1},\ldots ,\alpha _{n}} forms an integral basis for O K {\displaystyle {\mathcal {O}}_{K}} .[6] pg. 35

Cyclotomic extensions

If p is a prime, ζ is a pth root of unity and K = Q(ζ ) is the corresponding cyclotomic field, then an integral basis of OK = Z[ζ] is given by (1, ζ, ζ 2, ..., ζp−2).[7]

Quadratic extensions

If d {\displaystyle d} is a square-free integer and K = Q ( d ) {\displaystyle K=\mathbb {Q} ({\sqrt {d}}\,)} is the corresponding quadratic field, then O K {\displaystyle {\mathcal {O}}_{K}} is a ring of quadratic integers and its integral basis is given by (1, (1 + d) /2) if d ≡ 1 (mod 4) and by (1, d) if d ≡ 2, 3 (mod 4).[8] This can be found by computing the minimal polynomial of an arbitrary element a + b d Q ( d ) {\displaystyle a+b{\sqrt {d}}\in \mathbf {Q} ({\sqrt {d}})} where a , b Q {\displaystyle a,b\in \mathbf {Q} } .

Multiplicative structure

In a ring of integers, every element has a factorization into irreducible elements, but the ring need not have the property of unique factorization: for example, in the ring of integers Z[−5], the element 6 has two essentially different factorizations into irreducibles:[4][9]

6 = 2 3 = ( 1 + 5 ) ( 1 5 ) . {\displaystyle 6=2\cdot 3=(1+{\sqrt {-5}})(1-{\sqrt {-5}}).}

A ring of integers is always a Dedekind domain, and so has unique factorization of ideals into prime ideals.[10]

The units of a ring of integers OK is a finitely generated abelian group by Dirichlet's unit theorem. The torsion subgroup consists of the roots of unity of K. A set of torsion-free generators is called a set of fundamental units.[11]

Generalization

One defines the ring of integers of a non-archimedean local field F as the set of all elements of F with absolute value ≤ 1; this is a ring because of the strong triangle inequality.[12] If F is the completion of an algebraic number field, its ring of integers is the completion of the latter's ring of integers. The ring of integers of an algebraic number field may be characterised as the elements which are integers in every non-archimedean completion.[3]

For example, the p-adic integers Zp are the ring of integers of the p-adic numbers Qp.

See also

  • Minimal polynomial (field theory)
  • Integral closure – gives a technique for computing integral closures

Notes

  1. ^ The ring of integers, without specifying the field, refers to the ring Z {\displaystyle \mathbb {Z} } of "ordinary" integers, the prototypical object for all those rings. It is a consequence of the ambiguity of the word "integer" in abstract algebra.

Citations

  1. ^ Alaca & Williams 2003, p. 110, Defs. 6.1.2-3.
  2. ^ Alaca & Williams 2003, p. 74, Defs. 4.1.1-2.
  3. ^ a b Cassels 1986, p. 192.
  4. ^ a b Samuel 1972, p. 49.
  5. ^ Cassels (1986) p. 193
  6. ^ a b Baker. "Algebraic Number Theory" (PDF). pp. 33–35.
  7. ^ Samuel 1972, p. 43.
  8. ^ Samuel 1972, p. 35.
  9. ^ Artin, Michael (2011). Algebra. Prentice Hall. p. 360. ISBN 978-0-13-241377-0.
  10. ^ Samuel 1972, p. 50.
  11. ^ Samuel 1972, pp. 59–62.
  12. ^ Cassels 1986, p. 41.


References