Stolarsky mean

In mathematics, the Stolarsky mean is a generalization of the logarithmic mean. It was introduced by Kenneth B. Stolarsky in 1975.[1]

Definition

For two positive real numbers xy the Stolarsky Mean is defined as:

S p ( x , y ) = lim ( ξ , η ) ( x , y ) ( ξ p η p p ( ξ η ) ) 1 / ( p 1 ) = { x if  x = y ( x p y p p ( x y ) ) 1 / ( p 1 ) else {\displaystyle {\begin{aligned}S_{p}(x,y)&=\lim _{(\xi ,\eta )\to (x,y)}\left({\frac {\xi ^{p}-\eta ^{p}}{p(\xi -\eta )}}\right)^{1/(p-1)}\\[10pt]&={\begin{cases}x&{\text{if }}x=y\\\left({\frac {x^{p}-y^{p}}{p(x-y)}}\right)^{1/(p-1)}&{\text{else}}\end{cases}}\end{aligned}}}

Derivation

It is derived from the mean value theorem, which states that a secant line, cutting the graph of a differentiable function f {\displaystyle f} at ( x , f ( x ) ) {\displaystyle (x,f(x))} and ( y , f ( y ) ) {\displaystyle (y,f(y))} , has the same slope as a line tangent to the graph at some point ξ {\displaystyle \xi } in the interval [ x , y ] {\displaystyle [x,y]} .

ξ [ x , y ]   f ( ξ ) = f ( x ) f ( y ) x y {\displaystyle \exists \xi \in [x,y]\ f'(\xi )={\frac {f(x)-f(y)}{x-y}}}

The Stolarsky mean is obtained by

ξ = [ f ] 1 ( f ( x ) f ( y ) x y ) {\displaystyle \xi =\left[f'\right]^{-1}\left({\frac {f(x)-f(y)}{x-y}}\right)}

when choosing f ( x ) = x p {\displaystyle f(x)=x^{p}} .

Special cases

  • lim p S p ( x , y ) {\displaystyle \lim _{p\to -\infty }S_{p}(x,y)} is the minimum.
  • S 1 ( x , y ) {\displaystyle S_{-1}(x,y)} is the geometric mean.
  • lim p 0 S p ( x , y ) {\displaystyle \lim _{p\to 0}S_{p}(x,y)} is the logarithmic mean. It can be obtained from the mean value theorem by choosing f ( x ) = ln x {\displaystyle f(x)=\ln x} .
  • S 1 2 ( x , y ) {\displaystyle S_{\frac {1}{2}}(x,y)} is the power mean with exponent 1 2 {\displaystyle {\frac {1}{2}}} .
  • lim p 1 S p ( x , y ) {\displaystyle \lim _{p\to 1}S_{p}(x,y)} is the identric mean. It can be obtained from the mean value theorem by choosing f ( x ) = x ln x {\displaystyle f(x)=x\cdot \ln x} .
  • S 2 ( x , y ) {\displaystyle S_{2}(x,y)} is the arithmetic mean.
  • S 3 ( x , y ) = Q M ( x , y , G M ( x , y ) ) {\displaystyle S_{3}(x,y)=QM(x,y,GM(x,y))} is a connection to the quadratic mean and the geometric mean.
  • lim p S p ( x , y ) {\displaystyle \lim _{p\to \infty }S_{p}(x,y)} is the maximum.

Generalizations

One can generalize the mean to n + 1 variables by considering the mean value theorem for divided differences for the nth derivative. One obtains

S p ( x 0 , , x n ) = f ( n ) 1 ( n ! f [ x 0 , , x n ] ) {\displaystyle S_{p}(x_{0},\dots ,x_{n})={f^{(n)}}^{-1}(n!\cdot f[x_{0},\dots ,x_{n}])} for f ( x ) = x p {\displaystyle f(x)=x^{p}} .

See also

  • Mean

References

  1. ^ Stolarsky, Kenneth B. (1975). "Generalizations of the logarithmic mean". Mathematics Magazine. 48 (2): 87–92. doi:10.2307/2689825. ISSN 0025-570X. JSTOR 2689825. Zbl 0302.26003.