Task loading

Relationship between operator capacity and the accumulated activities that must be done

A task load indicates the degree of difficulty experienced when performing a task, and task loading describes the accumulation of tasks that are necessary to perform an operation. A light task loading can be managed by the operator with capacity to spare in case of contingencies. Task loads are primarily associated with underwater diving. They are also associated with workloads in other environments, such as aircraft cockpits and command and control stations.[1]

Task loads may be measured and compared. NASA uses six sub-scales in their task load rating procedure. Three of these relate to the demands on the subject and the other three to interactions between subject and task. Ratings contain a large personal component and may vary considerably between subjects, and over time as experience is gained.[2]

  1. Mental Demands: How much mental and perceptual effort is required;
  2. Physical Demands: How much physical effort is required;
  3. Temporal Demands: How much time pressure the subject feels;
  4. Own Performance: Rating of how successfully the task was performed;
  5. Effort: Rating of how much effort was put into the task; and
  6. Frustration: Rating of how frustrating or satisfying the task was to perform.

In underwater diving, task loading increases the risk of failure by the diver to undertake some key basic function which would normally be routine for safety underwater.[3][4] A heavy task loading may overwhelm the diver if something does not go according to plan.[5] This is particularly a problem in scuba diving, where the breathing gas supply is limited and delays may cause decompression obligations. The same workload may be a light task loading to a skilled diver with considerable experience of all the component tasks, and heavy task loading for a diver with little experience of some of the tasks.

Excessive task loading is implicated in many diving accidents, and may be limited by adding tasks one at a time, and adequately developing the requisite skills for each before adding more.

Common examples in scuba diving

Task loading is generally increased by any unplanned demand on the diver's attention, such as an emergency, an adverse change in environmental conditions, or a deviation from the dive plan. If this is added to an already marginally manageable task load, the diver may no longer be able to cope.

Common examples of activities which can contribute to high task loading are:

  • underwater photography or videography[6]
  • underwater search and recovery
  • underwater mapping
  • diving in environments requiring use lights or guide reels (such as night diving, wreck diving and cave diving) or other additional equipment
  • use of dry suits when unfamiliar
  • driving a diver propulsion vehicle (DPV)
  • diving in cold water has a distraction effect, which may reduce the capacity of the diver to manage complex tasks effectively[7]
  • breathing narcotic gas mixture indirectly affects task loading by reducing the capacity to manage the tasks effectively[8] Nitrogen narcosis can distract or cause narrowing of attention, both of which can distract from other tasks.
  • low visibility has a distracting effect as does low light levels
  • use of a rebreather, particularly in the event of a malfunction. Manually controlling a rebreather is a higher task load than using an electronically controlled rebreather as long as the electronic control system is working correctly. If it malfunctions, the diver must manually control the unit, which is likely to be less familiar, and a higher task loading than a familiar manual control system.
  • use of unfamiliar equipment, particularly combinations of several items that are unfamiliar.
  • buoyancy problems - inability to establish appropriate buoyancy, particularly excessive buoyancy or severely inadequate buoyancy.
  • trim problems - inability to trim as desired due to poor weight distribution

Common examples of routine functions that can be neglected as a result of task loading are:

  • monitoring breathing gas supply properly
  • maintaining buddy contact
  • maintaining proper buoyancy[nb 1]
  • monitoring depth and time to avoid no-decompression limits, or remain within planned decompression limits
  • monitoring oxygen partial pressure in a rebreather
  • maintaining contact with the guideline in a penetration dive

Management

Task loading is often identified as a key component in diving safety and diving accidents, although statistically it is difficult to monitor because divers with more experience can cope with a more complex array of tasks and equipment.[9] Simply controlling buoyancy while using a dry suit can call for great levels of attention in an inexperienced diver, but would be routine for an experienced cold water diver, and could be done safely while carrying a camera during a cave penetration or using a DPV.

Task loading represents an elevated risk when a new activity is undertaken by a diver. A diver learning how to use a dry suit, or starting underwater photography, or learning to operate a rebreather or manage multiple gas decompression will need to dedicate considerably more attention to the proper functioning of the new and unfamiliar piece of equipment which increases the risk of neglecting other critical responsibilities. Those risks will normally diminish with experience, provided that the experience is sufficiently concentrated and repeated to allow overlearning of skills and develop muscle memory.

See also

  • Cognitive load – Effort being used in the working memory
  • Overlearning – Practicing newly acquired skills beyond the point of initial mastery
  • Muscle memory – Consolidating a motor task into memory through repetition

Footnotes

  1. ^ This is identified in most training courses as a common failing of new underwater photographers and underwater videographers[citation needed]

References

  1. ^ "NASA TLX: Task Load Index". Humansystems.arc.nasa.gov. NASA Ames. Retrieved July 22, 2023.
  2. ^ Human Performance Research Group (January 1986). Task Load Index (NASA-TLX) v. 1.0 (PDF). Moffett Field. California: NASA Ames Research Center. Retrieved 2017-12-30.
  3. ^ Blumenberg, MA (1996). "Human Factors in Diving". California Univ Berkeley (ADA322423). Archived from the original on July 26, 2012. Retrieved 2008-07-05.{{cite journal}}: CS1 maint: unfit URL (link)
  4. ^ Lorenz J, Lorenz B, Heineke M (July 1992). "Effect of mental task load on fronto-central theta activity in a deep saturation dive to 450 msw". Undersea Biomedical Research. 19 (4): 243–62. PMID 1353926. Archived from the original on July 7, 2012. Retrieved 2008-07-05.{{cite journal}}: CS1 maint: unfit URL (link)
  5. ^ Zimmerman, M.E. (2011). Kreutzer, J.S.; DeLuca, J.; Caplan, B. (eds.). Task Load. New York, NY: Springer. {{cite book}}: |work= ignored (help)
  6. ^ Kagan, Becky (2009-05-16). "Task Loading Tips For Underwater Photographers & Videographers". DivePhotoGuide.com. Retrieved 2009-05-16.
  7. ^ Vaughan WS (June 1977). "Distraction effect of cold water on performance of higher-order tasks". Undersea Biomedical Research. 4 (2): 103–16. PMID 878066. Archived from the original on July 15, 2012. Retrieved 2008-07-05.{{cite journal}}: CS1 maint: unfit URL (link)
  8. ^ Biersner, RJ & Cameron, BJ (1970). "Cognitive Performance during a 1000-Foot Helium Dive". United States Navy Experimental Diving Unit Technical Report (NEDU-RR-10-70). Archived from the original on July 7, 2012. Retrieved 2008-07-05.{{cite journal}}: CS1 maint: unfit URL (link)
  9. ^ O'Connor PE (2007). "The nontechnical causes of diving accidents: can U.S. Navy divers learn from other industries?". Undersea and Hyperbaric Medicine. 34 (1): 51–9. PMID 17393939. Archived from the original on July 8, 2012. Retrieved 2008-07-05.{{cite journal}}: CS1 maint: unfit URL (link)


  • v
  • t
  • e
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
  • SS Egypt
  • Kronan
  • La Belle
  • SS Laurentic
  • RMS Lusitania
  • Mars
  • Mary Rose
  • USS Monitor
  • HMS Royal George
  • Vasa
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
  • Raid on Alexandria (1941)
  • Sinking of the Rainbow Warrior
Scientific projects
Awards and events
Incidents
Dive boat incidents
  • Sinking of MV Conception
Diver rescues
Early diving
Freediving fatalities
Offshore
diving incidents
  • Byford Dolphin diving bell accident
  • Drill Master diving accident
  • Star Canopus diving accident
  • Stena Seaspread diving accident
  • Venture One diving accident
  • Waage Drill II diving accident
  • Wildrake diving accident
Professional
diving fatalities
Scuba diving
fatalities
Publications
Manuals
  • NOAA Diving Manual
  • U.S. Navy Diving Manual
  • Basic Cave Diving: A Blueprint for Survival
  • Underwater Handbook
  • Bennett and Elliott's physiology and medicine of diving
  • Encyclopedia of Recreational Diving
  • The new science of skin and scuba diving
  • Professional Diver's Handbook
  • Basic Scuba
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
Training and registration
Diver
training
Skills
Recreational
scuba
certification
levels
Core diving skills
Leadership skills
Specialist skills
Diver training
certification
and registration
organisations
Commercial diver
certification
authorities
Commercial diving
schools
Free-diving
certification
agencies
Recreational
scuba
certification
agencies
Scientific diver
certification
authorities
Technical diver
certification
agencies
Cave
diving
Military diver
training centres
Military diver
training courses
Surface snorkeling
Snorkeling/breath-hold
Breath-hold
Open Circuit Scuba
Rebreather
  • Underwater photography
Sports governing
organisations
and federations
Competitions
Pioneers
of diving
Underwater
scientists
archaeologists and
environmentalists
Scuba record
holders
Underwater
filmmakers
and presenters
Underwater
photographers
Underwater
explorers
Aquanauts
Writers and journalists
Rescuers
Frogmen
Commercial salvors
Diving
physics
Diving
physiology
Decompression
theory
Diving
environment
Classification
Impact
Other
Deep-submergence
vehicle
  • Aluminaut
  • DSV Alvin
  • American submarine NR-1
  • Bathyscaphe
    • Archimède
    • FNRS-2
    • FNRS-3
    • Harmony class bathyscaphe
    • Sea Pole-class bathyscaphe
    • Trieste II
  • Deepsea Challenger
  • Ictineu 3
  • JAGO
  • Jiaolong
  • Konsul-class submersible
  • Limiting Factor
  • Russian submarine Losharik
  • Mir
  • Nautile
  • Pisces-class deep submergence vehicle
  • DSV Sea Cliff
  • DSV Shinkai
  • DSV Shinkai 2000
  • DSV Shinkai 6500
  • DSV Turtle
  • DSV-5 Nemo
Submarine rescue
Deep-submergence
rescue vehicle
Submarine escape
Escape set
Special
interest
groups
Neutral buoyancy
facilities for
Astronaut training
Other