Thalmann algorithm

Mathematical model for diver decompression

The Thalmann Algorithm (VVAL 18) is a deterministic decompression model originally designed in 1980 to produce a decompression schedule for divers using the US Navy Mk15 rebreather.[1] It was developed by Capt. Edward D. Thalmann, MD, USN, who did research into decompression theory at the Naval Medical Research Institute, Navy Experimental Diving Unit, State University of New York at Buffalo, and Duke University. The algorithm forms the basis for the current US Navy mixed gas and standard air dive tables (from US Navy Diving Manual Revision 6).[2] The decompression model is also referred to as the Linear–Exponential model or the Exponential–Linear model.[3]

History

The Mk15 rebreather supplies a constant partial pressure of oxygen of 0.7 bar (70 kPa) with nitrogen as the inert gas. Prior to 1980 it was operated using schedules from printed tables. It was determined that an algorithm suitable for programming into an underwater decompression monitor (an early dive computer) would offer advantages. This algorithm was initially designated "MK15 (VVAL 18) RTA", a real-time algorithm for use with the Mk15 rebreather.[4]

Description

VVAL 18 is a deterministic model that utilizes the Naval Medical Research Institute Linear Exponential (NMRI LE1 PDA) data set for calculation of decompression schedules. Phase two testing of the US Navy Diving Computer produced an acceptable algorithm with an expected maximum incidence of decompression sickness (DCS) less than 3.5% assuming that occurrence followed the binomial distribution at the 95% confidence level.

Response of a tissue compartment to a step increase and decrease in pressure showing Exponential-Exponential and two possibilities for Linear-Exponential uptake and washout

The use of simple symmetrical exponential gas kinetics models has shown up the need for a model that would give slower tissue washout. In the early 1980s the US Navy Experimental Diving Unit developed an algorithm using a decompression model with exponential gas absorption as in the usual Haldanian model, but a slower linear release during ascent. The effect of adding linear kinetics to the exponential model is to lengthen the duration of risk accumulation for a given compartment time constant.[5]

The model was originally developed for programming decompression computers for constant oxygen partial pressure closed circuit rebreathers.[6][7] Initial experimental diving using an exponential-exponential algorithm resulted in an unacceptable incidence of DCS, so a change was made to a model using the linear release model, with a reduction in DCS incidence. The same principles were applied to developing an algorithm and tables for a constant oxygen partial pressure model for Heliox diving[3]

The linear component is active when the tissue pressure exceeds ambient pressure by a given amount specific to the tissue compartment. When the tissue pressure drops below this cross-over criterion the tissue is modelled by exponential kinetics. During gas uptake tissue pressure never exceeds ambient, so it is always modelled by exponential kinetics. This results in a model with the desired asymmetrical characteristics of slower washout than uptake.[8] The linear/exponential transition is smooth. Choice of cross-over pressure determines the slope of the linear region as equal to the slope of the exponential region at the cross-over point.

During the development of these algorithms and tables, it was recognized that a successful algorithm could be used to replace the existing collection of incompatible tables for various air and Nitrox diving modes currently in the US Navy Diving Manual with a set of mutually compatible decompression tables based on a single model, which was proposed by Gerth and Doolette in 2007.[9] This has been done in Revision 6 of the US Navy Diving Manual published in 2008, though some changes were made.

An independent implementation of the EL-Real Time Algorithm was developed by Cochran Consulting, Inc. for the diver-carried Navy Dive Computer under the guidance of E. D. Thalmann.[10]

Physiological interpretation

Computer testing of a theoretical bubble growth model reported by Ball, Himm, Homer and Thalmann produced results which led to the interpretation of the three compartments used in the probabilistic LE model, with fast (1.5min), intermediate (51 min) and slow (488min) time constants, of which only the intermediate compartment uses the linear kinetics modification during decompression, as possibly not representing distinct anatomically identifiable tissues, but three different kinetic processes which relate to different elements of DCS risk.[11]

They conclude that bubble evolution may not be sufficient to explain all aspects of DCS risk, and the relationship between gas phase dynamics and tissue injury requires further investigation.[12]

References

  1. ^ Thalmann, Edward D; Buckingham, IPB; Spaur, WH (1980). "Testing of decompression algorithms for use in the U.S. Navy underwater decompression computer (Phase I)". Navy Experimental Diving Unit Research Report. 11–80. Archived from the original on April 15, 2013. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  2. ^ Staff (September 2008). "VVAL-18M: New algorithm on deck for Navy divers". Diver Magazine. 33 (7). Archived from the original on July 10, 2011.{{cite journal}}: CS1 maint: unfit URL (link)
  3. ^ a b Thalmann 1985a, p. 6
  4. ^ Thalmann, Edward D (2003). "Suitability of the USN MK15(VVAL18) Decompression Algorithm for Air Diving". Navy Experimental Diving Unit Research Report. 03–12. Archived from the original on April 15, 2013. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  5. ^ Parker et al. 1992, p. 1
  6. ^ Thalmann 1984, abstract
  7. ^ Huggins 1992, chpt. 4 page 13
  8. ^ Parker et al. 1992, p. 3
  9. ^ Gerth & Doolette 2007, p. 1
  10. ^ Gerth & Doolette 2007, p. 2
  11. ^ Ball 1995, p. 272
  12. ^ Ball 1995, p. 273

Sources

  • Thalmann, E. D. (1983). "Computer algorithms used in computing the MK15/16 constant 0.7 ATA oxygen partial pressure decompression tables". Navy Exp. Diving Unit Res. Report. 1–83. Archived from the original on April 15, 2013. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  • Thalmann, E. D. (1984). "Phase II testing of decompression algorithms for use in the U.S. Navy underwater decompression computer". Navy Exp. Diving Unit Res. Report. 1–84. Archived from the original on January 13, 2013. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  • Thalmann, E. D. (1985a). "Development of a Decompression Algorithm for Constant Oxygen Partial Pressure in Helium Diving" (PDF). Navy Exp. Diving Unit Res. Report. 1–85. Retrieved 13 July 2023.
  • Thalmann, E. D. (1985b). "Air-N202 Decompression Computer Algorithm Development" (PDF). Navy Exp. Diving Unit Res. Report. 8–85. Retrieved 13 July 2023.
  • Weathersby, P. K.; S.S. Survanshi; R.Y. Nishi; E.D. Thalmann (1992). "Statistically based decompression tables VII: Selection and treatment of primary air and N2O2 data". Joint Report: Naval Submarine Medical Research Laboratory and Naval Medical Research Institute. NSMRL 1182 and NMRI 92-85. Archived from the original on April 15, 2013. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  • Parker, E. C.; Survanshi, S.S.; Weathersby, P.K.; Thalmann, E.D. (1992). "Statistically Based Decompression Tables VIII: Linear Exponential Kinetics". Naval Medical Research Institute Report. 92–73. Archived from the original on January 13, 2013. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  • Huggins, Karl E. (1992). "Dynamics of decompression workshop". Course Taught at the University of Michigan. Archived from the original on 15 April 2013. Retrieved 10 January 2012.{{cite journal}}: CS1 maint: unfit URL (link)
  • Ball, R.; Himm, J.; Homer, L.D.; Thalmann, E.D. (1994). "A Model of Bubble Evolution During Decompression Based on a Monte Carlo Simulation of Inert Gas Diffusion". Naval Medical Research Institute Report. 94–36.
  • Ball, R.; Himm, J.; Homer, L.D.; Thalmann, E.D (1995). "Does the time course of bubble evolution explain decompression sickness risk?". Undersea and Hyperbaric Medicine. 22 (3): 263–280. ISSN 1066-2936. PMID 7580767. Archived from the original on 11 August 2011. Retrieved 14 March 2013.{{cite journal}}: CS1 maint: unfit URL (link)
  • Parker, E.C.; Survanshi, S.S.; Thalmann, E.D.; Weathersby, P.K. (1996). "Statistically based decompression tables IX: probabilistic models of the role of oxygen in human decompression sickness". Naval Medical Research Institute Report. 96–05. Archived from the original on April 15, 2013. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  • Survanshi, S.S.; Weathersby, P.K.; Thalmann, E.D. (1996). "Statistically based decompression tables X: Real-time decompression algorithm using a probabilistic model". Naval Medical Research Institute Report. 96–06. Archived from the original on April 15, 2013. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  • Thalmann, E. D.; P. C. Kelleher; S. S. Survanshi; E. C. Parker; P. K. Weathersby (1999). "Statistically Based Decompression Tables XI: Manned Validation of the LE Probabilistic Model for Air and Nitrogen-Oxygen Diving". Naval Medical Research Institute Report. 99–01. Archived from the original on April 15, 2013. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  • Survanshi, S. S.; E. C. Parker; E. D. Thalmann; P. K. Weathersby (1997). "Statistically based decompression tables XII: Volume I. Repetitive decompression tables for air and constant 0.7 ata PO2 in N2 using a probabilistic model". Naval Medical Research Institute Report. 97–36.
  • Survanshi, S. S.; E. C. Parker; E. D. Thalmann; P. K. Weathersby (1997). "Statistically based decompression tables XII: Volume II. Repetitive dive tables: Air". Naval Medical Research Institute Report. 97–36.
  • Survanshi, S. S.; E. C. Parker; E. D. Thalmann; P. K. Weathersby (1997). "Statistically based decompression tables XII: Volume III. Exceptional exposure tables: Air". Naval Medical Research Institute Report. 97–36.
  • Survanshi, S. S.; E. C. Parker; E. D. Thalmann; P. K. Weathersby (1997). "Statistically based decompression tables XII: Volume IV. Repetitive dive tables: 0.7 ATA PO2 in N2". Naval Medical Research Institute Report. 97–36.
  • Survanshi, S. S.; E. C. Parker; E. D. Thalmann; P. K. Weathersby (1997). "Statistically based decompression tables XII: Volume V. Exceptional exposure tables: 0.7 ATA PO2 in N2". Naval Medical Research Institute Report. 97–36.
  • Butler, F. K.; D. G. Southerland (2001). "The U.S. Navy decompression computer". Undersea Hyperb. Med. 28 (4): 213–28. ISSN 1066-2936. OCLC 26915585. PMID 12153150. Archived from the original on August 11, 2011. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  • Gault, K. A. (2003). "Potential Benefits of Navy Dive Computer Use in Ships Husbandry Diving: Analysis of Dives Conducted on the USS RONALD REAGAN (CVN-76)". Navy Exp. Diving Unit Res. Report. 06–04. Archived from the original on April 16, 2013. Retrieved 2008-03-16.{{cite journal}}: CS1 maint: unfit URL (link)
  • Gerth, Wayne A.; Doolette, David J. (2007). "VVal-18 and VVal-18M Thalmann Algorithm – Air Decompression Tables and Procedures". Navy Experimental Diving Unit, TA 01-07, NEDU TR 07-09. Archived from the original on 12 May 2013. Retrieved 27 January 2012.{{cite journal}}: CS1 maint: unfit URL (link)

External links

  • "The U.S. Navy Decompression Computer" - F. Butler
  • v
  • t
  • e
Underwater diving
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
  • SS Egypt
  • Kronan
  • La Belle
  • SS Laurentic
  • RMS Lusitania
  • Mars
  • Mary Rose
  • USS Monitor
  • HMS Royal George
  • Vasa
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
  • Raid on Alexandria (1941)
  • Sinking of the Rainbow Warrior
Scientific projects
Awards and events
Incidents
Dive boat incidents
  • Sinking of MV Conception
Diver rescues
Early diving
Freediving fatalities
Offshore
diving incidents
  • Byford Dolphin diving bell accident
  • Drill Master diving accident
  • Star Canopus diving accident
  • Stena Seaspread diving accident
  • Venture One diving accident
  • Waage Drill II diving accident
  • Wildrake diving accident
Professional
diving fatalities
Scuba diving
fatalities
Publications
Manuals
  • NOAA Diving Manual
  • U.S. Navy Diving Manual
  • Basic Cave Diving: A Blueprint for Survival
  • Underwater Handbook
  • Bennett and Elliott's physiology and medicine of diving
  • Encyclopedia of Recreational Diving
  • The new science of skin and scuba diving
  • Professional Diver's Handbook
  • Basic Scuba
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
Training and registration
Diver
training
Skills
Recreational
scuba
certification
levels
Core diving skills
Leadership skills
Specialist skills
Diver training
certification
and registration
organisations
Commercial diver
certification
authorities
Commercial diving
schools
Free-diving
certification
agencies
Recreational
scuba
certification
agencies
Scientific diver
certification
authorities
Technical diver
certification
agencies
Cave
diving
Military diver
training centres
Military diver
training courses
Surface snorkeling
Snorkeling/breath-hold
Breath-hold
Open Circuit Scuba
Rebreather
  • Underwater photography
Sports governing
organisations
and federations
Competitions
Pioneers
of diving
Underwater
scientists
archaeologists and
environmentalists
Scuba record
holders
Underwater
filmmakers
and presenters
Underwater
photographers
Underwater
explorers
Aquanauts
Writers and journalists
Rescuers
Frogmen
Commercial salvors
Diving
physics
Diving
physiology
Decompression
theory
Diving
environment
Classification
Impact
Other
Deep-submergence
vehicle
  • Aluminaut
  • DSV Alvin
  • American submarine NR-1
  • Bathyscaphe
    • Archimède
    • FNRS-2
    • FNRS-3
    • Harmony class bathyscaphe
    • Sea Pole-class bathyscaphe
    • Trieste II
  • Deepsea Challenger
  • Ictineu 3
  • JAGO
  • Jiaolong
  • Konsul-class submersible
  • Limiting Factor
  • Russian submarine Losharik
  • Mir
  • Nautile
  • Pisces-class deep submergence vehicle
  • DSV Sea Cliff
  • DSV Shinkai
  • DSV Shinkai 2000
  • DSV Shinkai 6500
  • DSV Turtle
  • DSV-5 Nemo
Submarine rescue
Deep-submergence
rescue vehicle
Submarine escape
Escape set
Special
interest
groups
Neutral buoyancy
facilities for
Astronaut training
Other