Tonga-Kermadec Ridge

Oceanic ridge in the south-west Pacific Ocean underlying the Tonga-Kermadec island arc
Tonga-Kermadec Ridge
Stratigraphic range: Mid Miocene to present 16.7–0 Ma
PreꞒ
O
S
D
C
P
T
J
K
Pg
N
The Tonga-Kermadec Ridge runs along the Tonga-Kermadec Trench or subduction zone.
TypeIgneous
Lithology
Primarymafic picro-basalts to dacite last 17 Ma
OtherUnderlying diverse subduction and other rocks >100 Ma old
Location
Coordinates25°S 175°W / 25°S 175°W / -25; -175
RegionSouth Pacific
CountryNew Zealand
Type section
Named forTonga and Kermadec Islands
  Lau
Basin
  Tonga-
Kerm-
 adec
Ridge
 Lau-
 Col-
 ville
Ridge
Tonga
Trench
Kermadec
Trench
Osbourn Trough
Louisville
Seamount
Chain
Hikurangi
Trough
South
Fiji
Basin
The Tonga-Kermedec Ridge related to other Pacific Ocean seafloor features.

The Tonga-Kermadec Ridge is an oceanic ridge in the south-west Pacific Ocean underlying the Tonga-Kermadec island arc. It is a result of the most linear, fastest converging, and seismically active subduction boundary on Earth, the Kermadec-Tonga subduction zone, and consequently has the highest density of submarine volcanoes.[1]

The Tonga-Kermadec Ridge stretches more than 3,000 km (1,900 mi) north-northeast from New Zealand's North Island. The Pacific Plate subducts westward beneath the Australian Plate along the ridge. It is divided into two segments, the northern Tonga Ridge and southern Kermadec Ridge, by the Louisville Seamount Chain. On its western side, the ridge is flanked by two back-arc basins, the Lau Basin and Havre Trough, that began opening at 6 Ma and 2 Ma respectively. Beyound the basins is the Lau-Colville Ridge. Together with these seafloor structures the ridge forms the eastward-migrating, 100  million year old Lau-Tonga-Havre-Kermadec arc/back-arc system or complex.[2]

The extension in the Lau-Havre basin results in a higher rate of subduction than convergence along the Australian-Pacific plate boundary. The rates of extension, subduction, and convergence all increase northwards in this complex, subduction at a rate of 24–6 cm/year (9.4–2.4 in/year) and extension at a rate of 9.1–15.9 cm/year (3.6–6.3 in/year). As a result, the Tonga-Kermadec Ridge moves independently of both tectonic plates and forms the Tonga-Kermadec Plate, in its turn fragmented into the Niuafo'ou, Tonga, and Kermadec microplates.[3]

The Samoa and Louisville mantle plumes both contribute to the lavas of two of the northern Tonga islands, Tafahi and Niuatoputapu; ocean island basalt (OIB) from the Samoa plume were introduced from 3–4 Ma when subduction in the Vitiaz Trench (north-west of Tonga) ceased. The lavas of the Louisville Seamount Chain were generated 80–90 Ma but began to subduct under the Tonga-Kermadec Ridge at c. 8 Ma.[4]

The Hikurangi and Manihiki plateaux, north and south of the Tonga-Kermadec Ridge respectively, form part of the Ontong Java-Hikurangi-Manihiki large igneous province (LIP), the largest volcanic event on Earth during the past 200 million years.[5] The Osbourn Trough, located just north of the Tonga-Kermadec and Louisville intersection, is the palaeo-spreading centre between the Hikurangi and Manihiki plateaux away from which the age of the Pacific Plate increases from c. 85 Ma to 144 Ma.[1] The subduction of the Hikurangi Plateau beneath New Zealand and the southern part of the Kermadec Arc has resulted in large volumes of lava and a high density of volcanoes in the arc. The initial Hikurangi-Kermadec collision, however, occurred 250 km (160 mi) to the north where a missing piece of the Ontong Java-Hikurangi-Manihiki LIP has already been subducted.[6]

See also

References

Notes
  1. ^ a b Timm et al. 2013, Geological and geochemical background, pp. 2–3
  2. ^ Ewart et al. 1998, Introduction, p. 332
  3. ^ Smith & Price 2006, Tectonic setting, pp. 321–322
  4. ^ Wendt et al. 1997, Conclusions, p. 614
  5. ^ Tarduno et al. 1991, p. 401
  6. ^ Timm et al. 2014, Abstract
Sources
  • Ewart, A.; Collerson, K. D.; Regelous, M.; Wendt, J. I.; Niu, Y. (1998). "Geochemical evolution within the Tonga-Kermadec-Lau arc-back-arc systems: the role of varying mantle wedge composition in space and time" (PDF). Journal of Petrology. 39 (3): 331–368. Bibcode:1998JPet...39..331E. doi:10.1093/petroj/39.3.331. Retrieved 19 March 2017.
  • Smith, I. E.; Price, R. C. (2006). "The Tonga–Kermadec arc and Havre–Lau back-arc system: their role in the development of tectonic and magmatic models for the western Pacific". Journal of Volcanology and Geothermal Research. 156 (3): 315–331. Bibcode:2006JVGR..156..315S. doi:10.1016/j.jvolgeores.2006.03.006. Retrieved 19 March 2017.
  • Tarduno, J. A.; Mayer, H.; Winterer, E. L.; Sliter, W. V.; Kroenke, L.; Mahoney, J. J.; Leckie, M.; Musgrave, R.; Storey, M. (1991). "Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism" (PDF). Science. 254 (5030): 399–403. Bibcode:1991Sci...254..399T. doi:10.1126/science.254.5030.399. PMID 17742226. S2CID 7627426. Retrieved 17 December 2016.
  • Timm, C.; Bassett, D.; Graham, I. J.; Leybourne, M. I.; De Ronde, C. E.; Woodhead, J.; Layton-Matthews, D.; Watts, A. B. (2013). "Louisville seamount subduction and its implication on mantle flow beneath the central Tonga–Kermadec arc" (PDF). Nature Communications. 4: 1720. Bibcode:2013NatCo...4.1720T. doi:10.1038/ncomms2702. PMID 23591887. Retrieved 19 March 2017.
  • Timm, C.; Davy, B.; Haase, K.; Hoernle, K. A.; Graham, I. J.; de Ronde, C. E.; Woodhead, J.; Bassett, D.; Hauff, F.; Mortimer, N.; Seebeck, H. C.; Wysoczanski, R. J.; Caratori-Tontini, F.; Gamble, J. A. (2014). "Subduction of the oceanic Hikurangi Plateau and its impact on the Kermadec arc" (PDF). Nature Communications. 5: 4923. Bibcode:2014NatCo...5.4923T. doi:10.1038/ncomms5923. PMID 25230110. Retrieved 19 March 2017.
  • Wendt, J. I.; Regelous, M.; Collerson, K. T.; Ewart, A. (1997). "Evidence for a contribution from two mantle plumes to island-arc lavas from northern Tonga". Geology. 25 (7): 611–614. Bibcode:1997Geo....25..611W. doi:10.1130/0091-7613(1997)025<0611:EFACFT>2.3.CO;2. Retrieved 25 February 2017.


  • v
  • t
  • e
Major divisions
  • Western Province (North Zealandia)
  • Eastern Province (South Zealandia)
Plateaux, ridges, and rises
Troughs and trenches
Oceanic basins
  • Bellona Basin
  • Campbell Basin
  • Canterbury Basin
  • Capel Basin
  • Cato Basin
  • Chatham Slope
  • Dampier Basin
  • Deepwater Taranaki Basin
  • East Coast Basin
  • Emerald Basin
  • Fairway Basin
  • Faust Basin
  • Gower Basin
  • Great South Basin
  • Middleton Seafloor Basin
  • Monowai Basin
  • Moore Basin
  • New Caledonia Basin
  • Norfolk Basin
  • Northeast Slope
  • Northland Basin
  • Outer Campbell Basin
  • Pegasus Basin
  • Pukaki Basin
  • Raukumara Basin
  • Reinga Basin
  • South Fiji Basin
  • South Loyalty Basin
  • Taranaki Basin
  • Wanganui Basin
  • West Coast Basin
SeamountsOther