Unitary element

In mathematics, an element of a *-algebra is called unitary if it is invertible and its inverse element is the same as its adjoint element.[1]

Definition

Let A {\displaystyle {\mathcal {A}}} be a *-algebra with unit e {\displaystyle e} . An element a A {\displaystyle a\in {\mathcal {A}}} is called unitary if a a = a a = e {\displaystyle aa^{*}=a^{*}a=e} . In other words, if a {\displaystyle a} is invertible and a 1 = a {\displaystyle a^{-1}=a^{*}} holds, then a {\displaystyle a} is unitary.[1]

The set of unitary elements is denoted by A U {\displaystyle {\mathcal {A}}_{U}} or U ( A ) {\displaystyle U({\mathcal {A}})} .

A special case from particular importance is the case where A {\displaystyle {\mathcal {A}}} is a complete normed *-algebra. This algebra satisfies the C*-identity ( a a = a 2   a A {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}} ) and is called a C*-algebra.

Criteria

  • Let A {\displaystyle {\mathcal {A}}} be a unital C*-algebra and a A N {\displaystyle a\in {\mathcal {A}}_{N}} a normal element. Then, a {\displaystyle a} is unitary if the spectrum σ ( a ) {\displaystyle \sigma (a)} consists only of elements of the circle group T {\displaystyle \mathbb {T} } , i.e. σ ( a ) T = { λ C | λ | = 1 } {\displaystyle \sigma (a)\subseteq \mathbb {T} =\{\lambda \in \mathbb {C} \mid |\lambda |=1\}} .[2]

Examples

  • The unit e {\displaystyle e} is unitary.[3]

Let A {\displaystyle {\mathcal {A}}} be a unital C*-algebra, then:

  • Every projection, i.e. every element a A {\displaystyle a\in {\mathcal {A}}} with a = a = a 2 {\displaystyle a=a^{*}=a^{2}} , is unitary. For the spectrum of a projection consists of at most 0 {\displaystyle 0} and 1 {\displaystyle 1} , as follows from the continuous functional calculus.[4]
  • If a A N {\displaystyle a\in {\mathcal {A}}_{N}} is a normal element of a C*-algebra A {\displaystyle {\mathcal {A}}} , then for every continuous function f {\displaystyle f} on the spectrum σ ( a ) {\displaystyle \sigma (a)} the continuous functional calculus defines an unitary element f ( a ) {\displaystyle f(a)} , if f ( σ ( a ) ) T {\displaystyle f(\sigma (a))\subseteq \mathbb {T} } .[2]

Properties

Let A {\displaystyle {\mathcal {A}}} be a unital *-algebra and a , b A U {\displaystyle a,b\in {\mathcal {A}}_{U}} . Then:

  • The element a b {\displaystyle ab} is unitary, since ( ( a b ) ) 1 = ( b a ) 1 = ( a ) 1 ( b ) 1 = a b {\textstyle ((ab)^{*})^{-1}=(b^{*}a^{*})^{-1}=(a^{*})^{-1}(b^{*})^{-1}=ab} . In particular, A U {\displaystyle {\mathcal {A}}_{U}} forms a multiplicative group.[1]
  • The element a {\displaystyle a} is normal.[3]
  • The adjoint element a {\displaystyle a^{*}} is also unitary, since a = ( a ) {\displaystyle a=(a^{*})^{*}} holds for the involution *.[1]
  • If A {\displaystyle {\mathcal {A}}} is a C*-algebra, a {\displaystyle a} has norm 1, i.e. a = 1 {\displaystyle \left\|a\right\|=1} .[5]

See also

  • Unitary matrix
  • Unitary operator

Notes

  1. ^ a b c d Dixmier 1977, p. 5.
  2. ^ a b Kadison 1983, p. 271. sfn error: no target: CITEREFKadison1983 (help)
  3. ^ a b Dixmier 1977, pp. 4–5.
  4. ^ Blackadar 2006, pp. 57, 63.
  5. ^ Dixmier 1977, p. 9.

References

  • Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. pp. 57, 63. ISBN 3-540-28486-9.
  • Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.
  • v
  • t
  • e
Spectral theory and *-algebras
Basic concepts
Main resultsSpecial Elements/OperatorsSpectrumDecomposition
Spectral TheoremSpecial algebrasFinite-DimensionalGeneralizationsMiscellaneousExamplesApplications