In mathematics, Voigt notation or Voigt form in multilinear algebra is a way to represent a symmetric tensor by reducing its order.[1] There are a few variants and associated names for this idea: Mandel notation, Mandel–Voigt notation and Nye notation are others found. Kelvin notation is a revival by Helbig[2] of old ideas of Lord Kelvin. The differences here lie in certain weights attached to the selected entries of the tensor. Nomenclature may vary according to what is traditional in the field of application. The notation is named after physicists Woldemar Voigt[1] & John Nye (scientist).
For example, a 2×2 symmetric tensor X has only three distinct elements, the two on the diagonal and the other being off-diagonal. Thus its rank can be reduced by expressing it as a vector without loss of information:
Voigt notation is used in materials science to simplify the representation of the rank-2 stress and strain tensors, and fourth-rank stiffness and compliance tensors.
The 3×3 stress and strain tensors in their full forms can be written as:
and .
Voigt notation then utilises the symmetry of these matrices ( and so on) to express them instead as a 6×1 vector:
and
where , , and are the engineering shear strains.
The benefit of using different representations for stress and strain is that the scalar invariance
is preserved.
This notation now allows the three-dimensional symmetric fourth-order stiffness, , and compliance, , tensors to be reduced to 6×6 matrices:
For a symmetric tensor of second rank
only six components are distinct, the three on the diagonal and the others being off-diagonal.
Thus it can be expressed, in Mandel notation,[3] as the vector
The main advantage of Mandel notation is to allow the use of the same conventional operations used with vectors,
for example:
A symmetric tensor of rank four satisfying and has 81 components in three-dimensional space, but only 36
components are distinct. Thus, in Mandel notation, it can be expressed as
Hooke's law has a symmetric fourth-order stiffness tensor with 81 components (3×3×3×3), but because the application of such a rank-4 tensor to a symmetric rank-2 tensor must yield another symmetric rank-2 tensor, not all of the 81 elements are independent. Voigt notation enables such a rank-4 tensor to be represented by a 6×6 matrix. However, Voigt's form does not preserve the sum of the squares, which in the case of Hooke's law has geometric significance. This explains why weights are introduced (to make the mapping an isometry).
A discussion of invariance of Voigt's notation and Mandel's notation can be found in Helnwein (2001).[6]
^Klaus Helbig (1994). Foundations of anisotropy for exploration seismics. Pergamon. ISBN0-08-037224-4.
^Jean Mandel (1965). "Généralisation de la théorie de plasticité de WT Koiter". International Journal of Solids and Structures. 1 (3): 273–295. doi:10.1016/0020-7683(65)90034-x.
^O.C. Zienkiewicz; R.L. Taylor; J.Z. Zhu (2005). The Finite Element Method: Its Basis and Fundamentals (6 ed.). Elsevier Butterworth—Heinemann. ISBN978-0-7506-6431-8.
^Maher Moakher (2009). "The Algebra of Fourth-Order Tensors with Application to Diffusion MRI". Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer Berlin Heidelberg. pp. 57–80. doi:10.1007/978-3-540-88378-4_4. ISBN978-3-540-88377-7.
^Peter Helnwein (February 16, 2001). "Some Remarks on the Compressed Matrix Representation of Symmetric Second-Order and Fourth-Order Tensors". Computer Methods in Applied Mechanics and Engineering. 190 (22–23): 2753–2770. Bibcode:2001CMAME.190.2753H. doi:10.1016/s0045-7825(00)00263-2.