ZFP36L1

Protein-coding gene in the species Homo sapiens
ZFP36L1
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1W0V, 1W0W

Identifiers
AliasesZFP36L1, BRF1, Berg36, ERF-1, ERF1, RNF162B, TIS11B, cMG1, ZFP36 ring finger protein-like 1, ZFP36 ring finger protein like 1
External IDsOMIM: 601064 MGI: 107946 HomoloGene: 31276 GeneCards: ZFP36L1
Gene location (Human)
Chromosome 14 (human)
Chr.Chromosome 14 (human)[1]
Chromosome 14 (human)
Genomic location for ZFP36L1
Genomic location for ZFP36L1
Band14q24.1Start68,787,660 bp[1]
End68,796,253 bp[1]
Gene location (Mouse)
Chromosome 12 (mouse)
Chr.Chromosome 12 (mouse)[2]
Chromosome 12 (mouse)
Genomic location for ZFP36L1
Genomic location for ZFP36L1
Band12|12 C3Start80,154,528 bp[2]
End80,159,787 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • canal of the cervix

  • gastric mucosa

  • nipple

  • urethra

  • right uterine tube

  • skin of abdomen

  • vagina

  • superficial temporal artery

  • lactiferous duct

  • human penis
Top expressed in
  • corneal stroma

  • lip

  • yolk sac

  • esophagus

  • superior surface of tongue

  • atrium

  • left lung lobe

  • molar

  • spleen

  • thymus
More reference expression data
BioGPS


More reference expression data
Gene ontology
Molecular function
  • DNA binding
  • DNA-binding transcription factor activity
  • metal ion binding
  • protein binding
  • mRNA binding
  • 14-3-3 protein binding
  • RNA binding
  • mRNA 3'-UTR AU-rich region binding
  • DNA-binding transcription factor activity, RNA polymerase II-specific
  • mRNA 3'-UTR binding
Cellular component
  • cytoplasm
  • nucleus
  • cytosol
  • P-body
  • ribonucleoprotein complex
Biological process
  • spongiotrophoblast layer development
  • mRNA catabolic process
  • multicellular organism growth
  • embryonic organ development
  • chorio-allantoic fusion
  • vasculogenesis
  • proepicardium development
  • heart development
  • nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay
  • neural tube development
  • cell population proliferation
  • regulation of translation
  • apoptotic process
  • T cell differentiation in thymus
  • regulation of gene expression
  • negative regulation of erythrocyte differentiation
  • cellular response to insulin stimulus
  • cellular response to phorbol 13-acetate 12-myristate
  • ERK1 and ERK2 cascade
  • positive regulation of intracellular mRNA localization
  • cellular response to glucocorticoid stimulus
  • cellular response to transforming growth factor beta stimulus
  • regulation of keratinocyte differentiation
  • response to wounding
  • positive regulation of monocyte differentiation
  • regulation of transcription, DNA-templated
  • cellular response to hypoxia
  • regulation of keratinocyte apoptotic process
  • regulation of keratinocyte proliferation
  • phosphatidylinositol 3-kinase signaling
  • cellular response to tumor necrosis factor
  • cellular response to epidermal growth factor stimulus
  • regulation of mRNA 3'-end processing
  • MAPK cascade
  • mRNA processing
  • multicellular organism development
  • nuclear-transcribed mRNA catabolic process, deadenylation-independent decay
  • p38MAPK cascade
  • regulation of mRNA stability
  • protein kinase B signaling
  • cellular response to fibroblast growth factor stimulus
  • regulation of B cell differentiation
  • positive regulation of fat cell differentiation
  • regulation of myoblast differentiation
  • mesendoderm development
  • mRNA transport
  • 3'-UTR-mediated mRNA destabilization
  • cellular response to cAMP
  • cellular response to peptide hormone stimulus
  • cellular response to salt stress
  • regulation of stem cell proliferation
  • cellular response to raffinose
  • positive regulation of nuclear-transcribed mRNA catabolic process, deadenylation-dependent decay
  • negative regulation of mitotic cell cycle phase transition
  • transport
  • regulation of transcription by RNA polymerase II
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

677

12192

Ensembl

ENSG00000185650

ENSMUSG00000021127

UniProt

Q07352

P23950

RefSeq (mRNA)

NM_004926
NM_001244698
NM_001244701

NM_007564

RefSeq (protein)

NP_001231627
NP_001231630
NP_004917

NP_031590

Location (UCSC)Chr 14: 68.79 – 68.8 MbChr 12: 80.15 – 80.16 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Butyrate response factor 1 is a protein that in humans is encoded by the ZFP36L1 gene.[5][6]

Function

This gene is a member of the TIS11 family of early response genes. Family members are induced by various agonists such as the phorbol ester TPA and the polypeptide mitogen EGF. The gene is well conserved across species and has a promoter that contains motifs seen in other early-response genes. The encoded protein contains a distinguishing putative zinc finger domain with a repeating cys-his motif. This RNA binding protein most likely functions in regulating the response to growth factors.[6]

ZFP36L1 can degrade transcripts of numerous components of senescence-associated secretory phenotype (SASP) factors.[7][8]

Interactions

ZFP36L1 has been shown to interact with MAPK14.[9]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000185650 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000021127 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Bustin SA, Nie XF, Barnard RC, Kumar V, Pascall JC, Brown KD, Leigh IM, Williams NS, McKay IA (Aug 1994). "Cloning and characterization of ERF-1, a human member of the Tis11 family of early-response genes". DNA Cell Biol. 13 (5): 449–59. doi:10.1089/dna.1994.13.449. PMID 8024689.
  6. ^ a b "Entrez Gene: ZFP36L1 zinc finger protein 36, C3H type-like 1".
  7. ^ Weichhart T (2018). "mTOR as Regulator of Lifespan, Aging, and Cellular Senescence: A Mini-Review". Gerontology. 84 (2): 127–134. doi:10.1159/000484629. PMC 6089343. PMID 29190625.
  8. ^ Papadopoli D, Boulay K, Kazak L, Hulea L (2019). "mTOR as a central regulator of lifespan and aging". F1000Research. 8: 998. doi:10.12688/f1000research.17196.1. PMC 6611156. PMID 31316753.
  9. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. S2CID 4427026.

Further reading

  • Hodson DJ, Janas ML, Galloway A, Bell SE, Andrews S, Li CM, Pannell R, Siebel CW, MacDonald HR, De Keersmaecker K, Ferrando AA, Grutz G, Turner M (August 2010). "Deletion of the RNA-binding proteins ZFP36L1 and ZFP36L2 leads to perturbed thymic development and T lymphoblastic leukemia". Nat. Immunol. 11 (8): 717–24. doi:10.1038/ni.1901. PMC 2953641. PMID 20622884.
  • Bell SE, Sanchez MJ, Spasic-Boskovic O, Santalucia T, Gambardella L, Burton GJ, Murphy JJ, Norton JD, Clark AR, Turner M (November 2006). "The RNA binding protein Zfp36l1 is required for normal vascularisation and post-transcriptionally regulates VEGF expression". Dev. Dyn. 235 (11): 3144–55. doi:10.1002/dvdy.20949. PMID 17013884.
  • Barnard RC, Pascall JC, Brown KD, McKay IA, Williams NS, Bustin SA (July 1993). "Coding sequence of ERF-1, the human homologue of Tis11b/cMG1, members of the Tis11 family of early response genes". Nucleic Acids Res. 21 (15): 3580. doi:10.1093/nar/21.15.3580. PMC 331466. PMID 8346037.
  • Maclean KN, See CG, McKay IA, Bustin SA (November 1995). "The human immediate early gene BRF1 maps to chromosome 14q22-q24". Genomics. 30 (1): 89–90. doi:10.1006/geno.1995.0014. PMID 8595910.
  • Ning ZQ, Norton JD, Li J, Murphy JJ (October 1996). "Distinct mechanisms for rescue from apoptosis in Ramos human B cells by signaling through CD40 and interleukin-4 receptor: role for inhibition of an early response gene, Berg36". Eur. J. Immunol. 26 (10): 2356–63. doi:10.1002/eji.1830261013. PMID 8898945. S2CID 25669421.
  • Blackshear PJ, Phillips RS, Vazquez-Matias J, Mohrenweiser H (2003). "Polymorphisms in the genes encoding members of the tristetraprolin family of human tandem CCCH zinc finger proteins". Prog. Nucleic Acid Res. Mol. Biol. Progress in Nucleic Acid Research and Molecular Biology. 75: 43–68. doi:10.1016/S0079-6603(03)75002-8. ISBN 9780125400756. PMID 14604009.
  • Reppe S, Olstad OK, Rian E, Gautvik VT, Gautvik KM, Jemtland R (November 2004). "Butyrate response factor 1 is regulated by parathyroid hormone and bone morphogenetic protein-2 in osteoblastic cells". Biochem. Biophys. Res. Commun. 324 (1): 218–23. doi:10.1016/j.bbrc.2004.09.030. PMID 15465005.
  • Ciais D, Cherradi N, Bailly S, Grenier E, Berra E, Pouyssegur J, Lamarre J, Feige JJ (November 2004). "Destabilization of vascular endothelial growth factor mRNA by the zinc-finger protein TIS11b". Oncogene. 23 (53): 8673–80. doi:10.1038/sj.onc.1207939. PMID 15467755.
  • v
  • t
  • e
  • 1rgo: Structural Basis for Recognition of the mRNA Class II AU-Rich Element by the Tandem Zinc Finger Domain of TIS11d
    1rgo: Structural Basis for Recognition of the mRNA Class II AU-Rich Element by the Tandem Zinc Finger Domain of TIS11d


Stub icon

This article on a gene on human chromosome 14 is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e