Zaslavskii map

Dynamical system that exhibits chaotic behavior
Zaslavskii map with parameters: ϵ = 5 , ν = 0.2 , r = 2. {\displaystyle \epsilon =5,\nu =0.2,r=2.}

The Zaslavskii map is a discrete-time dynamical system introduced by George M. Zaslavsky. It is an example of a dynamical system that exhibits chaotic behavior. The Zaslavskii map takes a point ( x n , y n {\displaystyle x_{n},y_{n}} ) in the plane and maps it to a new point:

x n + 1 = [ x n + ν ( 1 + μ y n ) + ϵ ν μ cos ( 2 π x n ) ] ( mod 1 ) {\displaystyle x_{n+1}=[x_{n}+\nu (1+\mu y_{n})+\epsilon \nu \mu \cos(2\pi x_{n})]\,({\textrm {mod}}\,1)}
y n + 1 = e r ( y n + ϵ cos ( 2 π x n ) ) {\displaystyle y_{n+1}=e^{-r}(y_{n}+\epsilon \cos(2\pi x_{n}))\,}

and

μ = 1 e r r {\displaystyle \mu ={\frac {1-e^{-r}}{r}}}

where mod is the modulo operator with real arguments. The map depends on four constants ν, μ, ε and r. Russel (1980) gives a Hausdorff dimension of 1.39 but Grassberger (1983) questions this value based on their difficulties measuring the correlation dimension.

See also

References

  • G.M. Zaslavskii (1978). "The Simplest case of a strange attractor". Phys. Lett. A. 69 (3): 145–147. Bibcode:1978PhLA...69..145Z. doi:10.1016/0375-9601(78)90195-0. (LINK)
  • D.A. Russel; J.D. Hanson & E. Ott (1980). "Dimension of strange attractors". Phys. Rev. 45 (14): 1175. Bibcode:1980PhRvL..45.1175R. doi:10.1103/PhysRevLett.45.1175. (LINK)
  • P. Grassberger and I. Procaccia (1983). "Measuring the strangeness of strange attractors". Physica. 9D (1–2): 189–208. Bibcode:1983PhyD....9..189G. doi:10.1016/0167-2789(83)90298-1. (LINK)
  • v
  • t
  • e
Chaos theory
Concepts
Core
  • Attractor
  • Bifurcation
  • Fractal
  • Limit set
  • Lyapunov exponent
  • Orbit
  • Periodic point
  • Phase space
Theorems
Conus textile shell


Circle map with black Arnold tongues
Theoretical
branchesChaotic
maps (list)
Discrete
Continuous
Physical
systemsChaos
theoristsRelated
articles