Wallisin kaavat

Wallisin kaavat ovat menetelmiä, joilla voidaan laskea piin likiarvoja mielivaltaisen tarkasti. Kaavat on johtanut englantilainen matemaatikko John Wallis[1]. Wallisin kaavojen mukaan:

(1) n = 1 2 n 2 n 1 2 n 2 n + 1 = lim n ( 2 1 2 3 4 3 4 5 6 5 6 7 2 n 2 n 1 2 n 2 n + 1 ) = π 2 {\displaystyle \prod _{n=1}^{\infty }{\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}=\lim _{n\to \infty }\left({\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot \ldots \cdot {\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\right)={\frac {\pi }{2}}}
(2) lim n ( n ! ) 2 2 2 n ( 2 n ! ) n = π {\displaystyle \lim _{n\to \infty }{\frac {(n!)^{2}\cdot 2^{2n}}{(2n!){\sqrt {n}}}}={\sqrt {\pi }}} .

Kaavojen todistus

Wallisin kaavat pystytään todistamaan osittaisintegroinnin avulla.

Merkitään jokaiselle n N {\displaystyle n\in \mathbb {N} }

I n = 0 π 2 sin n x d x {\displaystyle I_{n}=\int _{0}^{\frac {\pi }{2}}\sin ^{n}x\,{\text{d}}x}
a n = 2 1 2 3 4 3 4 5 6 5 6 7 2 n 2 n 1 2 n 2 n + 1 {\displaystyle a_{n}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot {\frac {6}{5}}\cdot {\frac {6}{7}}\cdot \ldots \cdot {\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}}
b n = ( n ! ) 2 2 2 n ( 2 n ! ) n {\displaystyle b_{n}={\frac {(n!)^{2}\cdot 2^{2n}}{(2n!){\sqrt {n}}}}}

Tällöin

I 0 = π 2 {\displaystyle I_{0}={\frac {\pi }{2}}} ja I 1 = 1 {\displaystyle I_{1}=1}

Jos n 2 {\displaystyle \scriptstyle n\geq 2} , niin osittaisintegroimalla nähdään, että

I n = cos π 2 sin n 1 π 2 + cos 0 sin n 1 0 0 π 2 cos x ( n 1 ) sin n 2 x cos x d x {\displaystyle I_{n}=-\cos {\frac {\pi }{2}}\sin ^{n-1}{\frac {\pi }{2}}+\cos 0\sin ^{n-1}0-\int _{0}^{\frac {\pi }{2}}-\cos x(n-1)\sin ^{n-2}x\cdot \cos x\,{\text{d}}x}
= ( n 1 ) 0 π 2 cos 2 x sin n 2 x d x = ( n 1 ) 0 π 2 ( 1 sin 2 x ) sin n 2 x d x {\displaystyle =(n-1)\int _{0}^{\frac {\pi }{2}}\cos ^{2}x\sin ^{n-2}x\,{\text{d}}x=(n-1)\int _{0}^{\frac {\pi }{2}}(1-\sin ^{2}x)\sin ^{n-2}x\,{\text{d}}x}
= ( n 1 ) ( I n 2 I n ) {\displaystyle =(n-1)(I_{n-2}-I_{n})}

Siispä saadaan rekursiivinen kaava I n {\displaystyle \scriptstyle I_{n}} :lle:

I n = n 1 n I n 2 {\displaystyle I_{n}={\frac {n-1}{n}}\cdot I_{n-2}}

Tämän avulla nähdään, että

I 2 n = 2 n 1 2 n I 2 n 2 = 2 n 1 2 n 2 n 3 2 n 2 I 2 n 4 {\displaystyle I_{2n}={\frac {2n-1}{2n}}\cdot I_{2n-2}={\frac {2n-1}{2n}}\cdot {\frac {2n-3}{2n-2}}\cdot I_{2n-4}}
= = 1 2 3 4 2 n 3 2 n 2 2 n 1 2 n I 0 {\displaystyle =\ldots ={\frac {1}{2}}\cdot {\frac {3}{4}}\cdot \ldots \cdot {\frac {2n-3}{2n-2}}\cdot {\frac {2n-1}{2n}}\cdot I_{0}} ja
I 2 n + 1 = 2 n 2 n + 1 I 2 n 1 = 2 n 2 n + 1 2 n 2 2 n 1 I 2 n 3 {\displaystyle I_{2n+1}={\frac {2n}{2n+1}}\cdot I_{2n-1}={\frac {2n}{2n+1}}\cdot {\frac {2n-2}{2n-1}}\cdot I_{2n-3}}
= = 2 3 4 5 2 n 2 2 n 1 2 n 2 n + 1 I 1 {\displaystyle =\ldots ={\frac {2}{3}}\cdot {\frac {4}{5}}\cdot \ldots \cdot {\frac {2n-2}{2n-1}}\cdot {\frac {2n}{2n+1}}\cdot I_{1}}

Näin ollen

I 2 n + 1 I 2 n = 2 1 2 3 4 3 4 5 2 n 2 2 n 3 2 n 2 2 n 1 2 n 2 n 1 2 n 2 n + 1 I 1 I 0 = a n 2 π {\displaystyle {\frac {I_{2n+1}}{I_{2n}}}={\frac {2}{1}}\cdot {\frac {2}{3}}\cdot {\frac {4}{3}}\cdot {\frac {4}{5}}\cdot \ldots \cdot {\frac {2n-2}{2n-3}}\cdot {\frac {2n-2}{2n-1}}\cdot {\frac {2n}{2n-1}}\cdot {\frac {2n}{2n+1}}\cdot {\frac {I_{1}}{I_{0}}}=a_{n}\cdot {\frac {2}{\pi }}} , eli
a n = I 2 n + 1 I 2 n π 2 {\displaystyle a_{n}={\frac {I_{2n+1}}{I_{2n}}}\cdot {\frac {\pi }{2}}}

Koska sin 2 n + 2 x sin 2 n + 1 x sin 2 n x {\displaystyle \sin ^{2n+2}x\leq \sin ^{2n+1}x\leq \sin ^{2n}x} kaikilla x [ 0 , π 2 ] {\displaystyle x\in \left[0,{\frac {\pi }{2}}\right]} , niin I 2 n + 2 I 2 n + 1 I 2 n {\displaystyle I_{2n+2}\leq I_{2n+1}\leq I_{2n}} . Siten

1 I 2 n + 1 I 2 n I 2 n + 2 I 2 n = 2 n + 1 2 n + 2 I 2 n I 2 n = 2 n + 1 2 n + 2 1 {\displaystyle 1\geq {\frac {I_{2n+1}}{I_{2n}}}\geq {\frac {I_{2n+2}}{I_{2n}}}={\frac {{\frac {2n+1}{2n+2}}I_{2n}}{I_{2n}}}={\frac {2n+1}{2n+2}}\to 1} , kun n {\displaystyle n\to \infty } . Siis
lim n a n = lim n I 2 n + 1 I 2 n π 2 = π 2 {\displaystyle \lim _{n\to \infty }a_{n}=\lim _{n\to \infty }{\frac {I_{2n+1}}{I_{2n}}}\cdot {\frac {\pi }{2}}={\frac {\pi }{2}}} , eli väite (1) on todistettu. {\displaystyle \Box }

Koska

b n + 1 2 = b n 2 ( 2 n + 2 ) 2 ( 2 n + 1 ) 2 n n + 1 {\displaystyle b_{n+1}^{2}=b_{n}^{2}\cdot {\frac {(2n+2)^{2}}{(2n+1)^{2}}}\cdot {\frac {n}{n+1}}} ja
a n = a n + 1 ( 2 n + 1 ) ( 2 n + 3 ) ( 2 n + 2 ) 2 {\displaystyle a_{n}=a_{n+1}\cdot {\frac {(2n+1)(2n+3)}{(2n+2)^{2}}}} , niin induktiotodistuksella nähdään helposti, että
b n 2 = 2 n + 1 n a n {\displaystyle b_{n}^{2}={\frac {2n+1}{n}}\cdot a_{n}} kaikilla n. Siten väite (2) seuraa väitteestä (1). {\displaystyle \Box }

Katso myös

  • Luettelo piin laskukaavoista

Lähteet

  1. Lehtinen, Matti: Osittaisintegroinnin ihmeitä: Wallisin ja Stirlingin kaavat [1]