RNK helikaza

RNK helikaza
RNK helikaza dimer, Hepatitis C virus
Identifikatori
EC broj3.6.4.13
Baze podataka
IntEnzIntEnz pregled
BRENDABRENDA pristup
ExPASyNiceZyme pregled
KEGGKEGG pristup
MetaCycmetabolički put
PRIAMprofil
Strukture PBPRCSB PDB PDBe PDBj PDBsum
Pretraga
PMCčlanci
PubMedčlanci
NCBIproteini

RNK helikaza (EC 3.6.4.13, CSFV NS3 helikaza, DBP2, DbpA, DDX17, DDX25, DDX3, DDX3X, DDX3Y, DDX4, DDX5, DEAD-box protein DED1, DEAD-kutija RNK helikaza, DEAH-kutija protein 2, DEAH-kutija RNK helikaza, DED1, Dex(H/D) RNK helikaza, EhDEAD1, EhDEAD1 RNK helikaza, eIF4A helikaza, KOKV helikaza, Mtr4p, nestrukturni protein 3 helikaza, NPH-II, RHA, RNK helikaza A, RNK helikaza DDX3, RNK helikaza Hera, RNK-zavisna ATPaza, TGBp1 NTPaza/helikaza domen, VRH1, GRTH/DDX25) je enzim sa sistematskim imenom ATP fosfohidrolaza (odvijanje RNK heliksa).[1][2][3][4][5][6][7][8] Ovaj enzim katalizuje sledeću hemijsku reakciju

ATP + H2O {\displaystyle \rightleftharpoons } ADP + fosfat

RNK helikaze koriste energiju ATP hidrolize za odvijanje RNK molekula.

Reference

  1. ^ Cordin, O., Tanner, N.K., Doere, M., Linder, P. and Banroques, J. (2004). „The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity”. EMBO J. 23: 2478—2487. PMID 15201868. CS1 одржавање: Вишеструка имена: списак аутора (веза)
  2. ^ Rodamilans, B. & Montoya, G. (2007). „Expression, purification, crystallization and preliminary X-ray diffraction analysis of the DDX3 RNA helicase domain”. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63: 283—286. PMID 17401195. 
  3. ^ Lee, C.G. & Hurwitz, J. (1992). „A new RNA helicase isolated from HeLa cells that catalytically translocates in the 3′ to 5′ direction”. J. Biol. Chem. 267: 4398—4407. PMID 1537828. 
  4. ^ Li, S.C., Chung, M.C. and Chen, C.S. (2001). „Cloning and characterization of a DEAD box RNA helicase from the viable seedlings of aged mung bean”. Plant Mol. Biol. 47: 761—770. PMID 11785937. CS1 одржавање: Вишеструка имена: списак аутора (веза)
  5. ^ Wu, J., Bera, A.K., Kuhn, R.J. and Smith, J.L. (2005). „Structure of the Flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing”. J. Virol. 79: 10268—10277. PMID 16051820. CS1 одржавање: Вишеструка имена: списак аутора (веза)
  6. ^ Gross, C.H. & Shuman, S. (1998). „The nucleoside triphosphatase and helicase activities of vaccinia virus NPH-II are essential for virus replication”. J. Virol. 72: 4729—4736. PMID 9573237. 
  7. ^ Frick, D.N. (2007). „The hepatitis C virus NS3 protein: a model RNA helicase and potential drug target”. Curr. Issues Mol. Biol. 9: 1—20. PMID 17263143. 
  8. ^ Ivanov, K.A. & Ziebuhr, J. (2004). „Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities”. J. Virol. 78: 7833—7838. PMID 15220459. 

Literatura

  • Nicholas C. Price; Lewis Stevens (1999). Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins (Third изд.). USA: Oxford University Press. ISBN 019850229X. 
  • Eric J. Toone (2006). Advances in Enzymology and Related Areas of Molecular Biology, Protein Evolution (Volume 75 изд.). Wiley-Interscience. ISBN 0471205036. 
  • Branden C; Tooze J. Introduction to Protein Structure. New York, NY: Garland Publishing. ISBN 0-8153-2305-0. 
  • Irwin H. Segel. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Book 44 изд.). Wiley Classics Library. ISBN 0471303097. 

Spoljašnje veze

  • RNA+helicase на US National Library of Medicine Medical Subject Headings (MeSH)
  • п
  • р
  • у
TemeTipovi
  • B enzm: 1.1/2/3/4/5/6/7/8/10/11/13/14/15-18, 2.1/2/3/4/5/6/7/8, 2.7.10, 2.7.11-12, 3.1/2/3/4/5/6/7, 3.1.3.48, 3.4.21/22/23/24, 4.1/2/3/4/5/6, 5.1/2/3/4/99, 6.1-3/4/5-6
Portali:
  •  Molekularna i ćelijska biologija
  •  Hemija