Üstel fonksiyonların integralleri

Aşağıdaki liste üstel fonksiyonların integrallerini (ters türev lerini) içermektedir. İntegral fonksiyonlarının tüm bir listesi için lütfen İntegral tablosu sayfasına bakınız.

e c x d x = 1 c e c x {\displaystyle \int e^{cx}\;\mathrm {d} x={\frac {1}{c}}e^{cx}}
a c x d x = 1 c ln a a c x {\displaystyle \int a^{cx}\;\mathrm {d} x={\frac {1}{c\cdot \ln a}}a^{cx}} ( a > 0 ,   a 1 {\displaystyle a>0,\ a\neq 1} için)
x e c x d x = e c x c 2 ( c x 1 ) {\displaystyle \int xe^{cx}\;\mathrm {d} x={\frac {e^{cx}}{c^{2}}}(cx-1)}
x 2 e c x d x = e c x ( x 2 c 2 x c 2 + 2 c 3 ) {\displaystyle \int x^{2}e^{cx}\;\mathrm {d} x=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)}
x n e c x d x = 1 c x n e c x n c x n 1 e c x d x {\displaystyle \int x^{n}e^{cx}\;\mathrm {d} x={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}\mathrm {d} x}
e c x x d x = ln | x | + n = 1 ( c x ) n n n ! {\displaystyle \int {\frac {e^{cx}}{x}}\;\mathrm {d} x=\ln |x|+\sum _{n=1}^{\infty }{\frac {(cx)^{n}}{n\cdot n!}}}
e c x x n d x = 1 n 1 ( e c x x n 1 + c e c x x n 1 d x ) (for  n 1 ) {\displaystyle \int {\frac {e^{cx}}{x^{n}}}\;\mathrm {d} x={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}}{x^{n-1}}}\,\mathrm {d} x\right)\qquad {\mbox{(for }}n\neq 1{\mbox{)}}}
e c x ln x d x = 1 c e c x ln | x | Ei ( c x ) {\displaystyle \int e^{cx}\ln x\;\mathrm {d} x={\frac {1}{c}}e^{cx}\ln |x|-\operatorname {Ei} \,(cx)}
e c x sin b x d x = e c x c 2 + b 2 ( c sin b x b cos b x ) {\displaystyle \int e^{cx}\sin bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\sin bx-b\cos bx)}
e c x cos b x d x = e c x c 2 + b 2 ( c cos b x + b sin b x ) {\displaystyle \int e^{cx}\cos bx\;\mathrm {d} x={\frac {e^{cx}}{c^{2}+b^{2}}}(c\cos bx+b\sin bx)}
e c x sin n x d x = e c x sin n 1 x c 2 + n 2 ( c sin x n cos x ) + n ( n 1 ) c 2 + n 2 e c x sin n 2 x d x {\displaystyle \int e^{cx}\sin ^{n}x\;\mathrm {d} x={\frac {e^{cx}\sin ^{n-1}x}{c^{2}+n^{2}}}(c\sin x-n\cos x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\sin ^{n-2}x\;\mathrm {d} x}
e c x cos n x d x = e c x cos n 1 x c 2 + n 2 ( c cos x + n sin x ) + n ( n 1 ) c 2 + n 2 e c x cos n 2 x d x {\displaystyle \int e^{cx}\cos ^{n}x\;\mathrm {d} x={\frac {e^{cx}\cos ^{n-1}x}{c^{2}+n^{2}}}(c\cos x+n\sin x)+{\frac {n(n-1)}{c^{2}+n^{2}}}\int e^{cx}\cos ^{n-2}x\;\mathrm {d} x}
x e c x 2 d x = 1 2 c e c x 2 {\displaystyle \int xe^{cx^{2}}\;\mathrm {d} x={\frac {1}{2c}}\;e^{cx^{2}}}
e c x 2 d x = π 4 c erf ( c x ) {\displaystyle \int e^{-cx^{2}}\;\mathrm {d} x={\sqrt {\frac {\pi }{4c}}}{\mbox{erf}}({\sqrt {c}}x)} ( erf {\displaystyle {\mbox{erf}}} istatistikte önemli bir kavram olan Hata fonksiyonudur)
x e c x 2 d x = 1 2 c e c x 2 {\displaystyle \int xe^{-cx^{2}}\;\mathrm {d} x=-{\frac {1}{2c}}e^{-cx^{2}}}
1 σ 2 π e ( x μ ) 2 / 2 σ 2 d x = 1 2 ( 1 + erf x μ σ 2 ) {\displaystyle \int {1 \over \sigma {\sqrt {2\pi }}}\,e^{-{(x-\mu )^{2}/2\sigma ^{2}}}\;\mathrm {d} x={\frac {1}{2}}(1+{\mbox{erf}}\,{\frac {x-\mu }{\sigma {\sqrt {2}}}})}
e x 2 d x = e x 2 ( j = 0 n 1 c 2 j 1 x 2 j + 1 ) + ( 2 n 1 ) c 2 n 2 e x 2 x 2 n d x valid for  n > 0 , {\displaystyle \int e^{x^{2}}\,\mathrm {d} x=e^{x^{2}}\left(\sum _{j=0}^{n-1}c_{2j}\,{\frac {1}{x^{2j+1}}}\right)+(2n-1)c_{2n-2}\int {\frac {e^{x^{2}}}{x^{2n}}}\;\mathrm {d} x\quad {\mbox{valid for }}n>0,}
where c 2 j = 1 3 5 ( 2 j 1 ) 2 j + 1 = ( 2 j ) ! j ! 2 2 j + 1   . {\displaystyle c_{2j}={\frac {1\cdot 3\cdot 5\cdots (2j-1)}{2^{j+1}}}={\frac {(2j)\,!}{j!\,2^{2j+1}}}\ .}

Belirli İntegraller

0 1 e x ln a + ( 1 x ) ln b d x = 0 1 ( a b ) x b d x = 0 1 a x b 1 x d x = a b ln a ln b {\displaystyle \int _{0}^{1}e^{x\cdot \ln a+(1-x)\cdot \ln b}\;\mathrm {d} x=\int _{0}^{1}\left({\frac {a}{b}}\right)^{x}\cdot b\;\mathrm {d} x=\int _{0}^{1}a^{x}\cdot b^{1-x}\;\mathrm {d} x={\frac {a-b}{\ln a-\ln b}}} for a > 0 ,   b > 0 ,   a b {\displaystyle a>0,\ b>0,\ a\neq b} , Logaritmik ortalama için
0 e a x d x = 1 a {\displaystyle \int _{0}^{\infty }e^{-ax}\,\mathrm {d} x={\frac {1}{a}}}
0 e a x 2 d x = 1 2 π a ( a > 0 ) {\displaystyle \int _{0}^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\frac {1}{2}}{\sqrt {\pi \over a}}\quad (a>0)} (Gauss integrali)
e a x 2 d x = π a ( a > 0 ) {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}\,\mathrm {d} x={\sqrt {\pi \over a}}\quad (a>0)}
e a x 2 e 2 b x d x = π a e b 2 a ( a > 0 ) {\displaystyle \int _{-\infty }^{\infty }e^{-ax^{2}}e^{2bx}\,\mathrm {d} x={\sqrt {\frac {\pi }{a}}}e^{\frac {b^{2}}{a}}\quad (a>0)}
x e a ( x b ) 2 d x = b π a ( a > 0 ) {\displaystyle \int _{-\infty }^{\infty }xe^{-a(x-b)^{2}}\,\mathrm {d} x=b{\sqrt {\pi \over a}}\quad (a>0)}
x 2 e a x 2 d x = 1 2 π a 3 ( a > 0 ) {\displaystyle \int _{-\infty }^{\infty }x^{2}e^{-ax^{2}}\,\mathrm {d} x={\frac {1}{2}}{\sqrt {\pi \over a^{3}}}\quad (a>0)}
0 x n e a x 2 d x = { 1 2 Γ ( n + 1 2 ) / a n + 1 2 ( n > 1 , a > 0 ) ( 2 k 1 ) ! ! 2 k + 1 a k π a ( n = 2 k , k integer , a > 0 ) k ! 2 a k + 1 ( n = 2 k + 1 , k integer , a > 0 ) {\displaystyle \int _{0}^{\infty }x^{n}e^{-ax^{2}}\,\mathrm {d} x={\begin{cases}{\frac {1}{2}}\Gamma \left({\frac {n+1}{2}}\right)/a^{\frac {n+1}{2}}&(n>-1,a>0)\\{\frac {(2k-1)!!}{2^{k+1}a^{k}}}{\sqrt {\frac {\pi }{a}}}&(n=2k,k\;{\text{integer}},a>0)\\{\frac {k!}{2a^{k+1}}}&(n=2k+1,k\;{\text{integer}},a>0)\end{cases}}} (!! is the Çift faktöryel)
0 x n e a x d x = { Γ ( n + 1 ) a n + 1 ( n > 1 , a > 0 ) n ! a n + 1 ( n = 0 , 1 , 2 , , a > 0 ) {\displaystyle \int _{0}^{\infty }x^{n}e^{-ax}\,\mathrm {d} x={\begin{cases}{\frac {\Gamma (n+1)}{a^{n+1}}}&(n>-1,a>0)\\{\frac {n!}{a^{n+1}}}&(n=0,1,2,\ldots ,a>0)\\\end{cases}}}
0 e a x sin b x d x = b a 2 + b 2 ( a > 0 ) {\displaystyle \int _{0}^{\infty }e^{-ax}\sin bx\,\mathrm {d} x={\frac {b}{a^{2}+b^{2}}}\quad (a>0)}
0 e a x cos b x d x = a a 2 + b 2 ( a > 0 ) {\displaystyle \int _{0}^{\infty }e^{-ax}\cos bx\,\mathrm {d} x={\frac {a}{a^{2}+b^{2}}}\quad (a>0)}
0 x e a x sin b x d x = 2 a b ( a 2 + b 2 ) 2 ( a > 0 ) {\displaystyle \int _{0}^{\infty }xe^{-ax}\sin bx\,\mathrm {d} x={\frac {2ab}{(a^{2}+b^{2})^{2}}}\quad (a>0)}
0 x e a x cos b x d x = a 2 b 2 ( a 2 + b 2 ) 2 ( a > 0 ) {\displaystyle \int _{0}^{\infty }xe^{-ax}\cos bx\,\mathrm {d} x={\frac {a^{2}-b^{2}}{(a^{2}+b^{2})^{2}}}\quad (a>0)}
0 2 π e x cos θ d θ = 2 π I 0 ( x ) {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta }d\theta =2\pi I_{0}(x)} ( I 0 {\displaystyle I_{0}} Bessel fonksiyonunun 1. mertebede değişmişidir)
0 2 π e x cos θ + y sin θ d θ = 2 π I 0 ( x 2 + y 2 ) {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)}

Kaynakça

  • Milton Abramowitz ve Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 1964. Birkaç integral bu kitapta 69. sayfada16 Şubat 2009 tarihinde Wayback Machine sitesinde arşivlendi. listelenmiştir.