Climate-smart agriculture

System for agricultural productivity
A man in a hat holding a yellow mango stands in front of a large white sign in a field of mangos.
A local farmer in Myanmar poses in front of a mango field that is a part of a Climate Smart Village.

Climate-smart agriculture (CSA) (or climate resilient agriculture) is an integrated approach to managing land to help adapt agricultural methods, livestock and crops to the effects of climate change and, where possible, counteract it by reducing greenhouse gas emissions from agriculture, while taking into account the growing world population to ensure food security.[1] The emphasis is not simply on carbon farming or sustainable agriculture, but also on increasing agricultural productivity.

CSA has three pillars: increasing agricultural productivity and incomes; adapting and building resilience to climate change; and reducing or removing greenhouse gas emissions from agriculture.[2] There are different actions listed to counter the future challenges for crops and plants. For example, with regard to rising temperatures and heat stress, CSA recommends the production of heat tolerant crop varieties, mulching, water management, shade house, boundary trees, carbon sequestration,[3] and appropriate housing and spacing for cattle.[4] CSA seeks to stabilize crop production while mitigating the adverse impacts of climate change while maximizing food security.[5][6]

There are attempts to mainstream CSA into core government policies, expenditures and planning frameworks. In order for CSA policies to be effective, they must be able to contribute to broader economic growth, the sustainable development goals and poverty reduction. They must also be integrated with disaster risk management strategies, actions, and social safety net programmes.[7]

Definition

The World Bank described climate-smart agriculture (CSA) as follows: "CSA is a set of agricultural practices and technologies which simultaneously boost productivity, enhance resilience and reduce GHG emissions."[1] and "CSA is an integrated approach to managing landscapes—cropland, livestock, forests and fisheries--that address the interlinked challenges of food security and climate change."[1]

FAO's definition is: "CSA is an approach that helps guide actions to transform agri-food systems towards green and climate resilient practices."[2]

Objectives

CSA has the following three objectives: "sustainably increasing agricultural productivity and incomes; adapting and building resilience to climate change; and reducing and/or removing greenhouse gas emissions".[2]

Increasing climate resilience

Cclimate change is altering global rainfall patterns. This affects agriculture.[8] Rainfed agriculture accounts for 80% of global agriculture.[9] Many of the 852 million poor people in the world live in parts of Asia and Africa that depend on rainfall to cultivate food crops. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage. Extended drought can cause the failure of small and marginal farms. This results in increased economic, political and social disruption.

Water availability strongly influences all kinds of agriculture. Changes in total seasonal precipitation or its pattern of variability are both important. Moisture stress during flowering, pollination, and grain-filling harms most crops. It is particularly harmful to corn, soybeans, and wheat. Increased evaporation from the soil and accelerated transpiration in the plants themselves will cause moisture stress.

There are many adaptation options. One is to develop crop varieties with greater drought tolerance[10] and another is to build local rainwater storage. Using small planting basins to harvest water in Zimbabwe has boosted maize yields. This happens whether rainfall is abundant or scarce. And in Niger they have led to three or fourfold increases in millet yields.[11]

Climate change can threaten food security and water security. It is possible to adapt food systems to improve food security and prevent negative impacts from climate change in the future.[12]

Reducing greenhouse gas emissions

This section is an excerpt from Greenhouse gas emissions from agriculture.[edit]
One-quarter of the world's greenhouse gas emissions result from food and agriculture.[13]

The agricultural food system is responsible for a significant amount of greenhouse gas emissions.[14][15] In addition to being a significant user of land and consumer of fossil fuel, agriculture contributes directly to greenhouse gas emissions through practices such as rice production and the raising of livestock.[16] The three main causes of the increase in greenhouse gases observed over the past 250 years have been fossil fuels, land use, and agriculture.[17] Farm animal digestive systems can be put into two categories: monogastric and ruminant. Ruminant cattle for beef and dairy rank high in greenhouse-gas emissions; monogastric, or pigs and poultry-related foods, are low. The consumption of the monogastric types may yield less emissions. Monogastric animals have a higher feed-conversion efficiency, and also do not produce as much methane.[14] Furthermore, CO2 is actually re-emitted into the atmosphere by plant and soil respiration in the later stages of crop growth, causing more greenhouse gas emissions.[18] The amount of greenhouse gases produced during the manufacture and use of nitrogen fertilizer is estimated at around 5% of anthropogenic greenhouse gas emissions. The single most important way to cut emissions from it is to use less fertilizers, while increasing the efficiency of their use.[19]

There are many strategies that can be used to help soften the effects, and the further production of greenhouse gas emissions - this is also referred to as climate-smart agriculture. Some of these strategies include a higher efficiency in livestock farming, which includes management, as well as technology; a more effective process of managing manure; a lower dependence upon fossil-fuels and nonrenewable resources; a variation in the animals' eating and drinking duration, time and location; and a cutback in both the production and consumption of animal-sourced foods.[14][20][21][22] A range of policies may reduce greenhouse gas emissions from the agriculture sector for a more sustainable food system.[23]: 816–817 

Strategies

Strategies and methods for CSA should be specific to the local contexts where they are employed. They should include capacity-building for participants in order to offset the higher costs of implementation.[24]

Carbon farming

Carbon farming is one of the components of climate-smart agriculture and aims at reducing or removing greenhouse gas emissions from agriculture. .

This section is an excerpt from Carbon farming.[edit]

Carbon farming is a set of agricultural methods that aim to store carbon in the soil, crop roots, wood and leaves. The technical term for this is carbon sequestration. The overall goal of carbon farming is to create a net loss of carbon from the atmosphere.[25] This is done by increasing the rate at which carbon is sequestered into soil and plant material. One option is to increase the soil's organic matter content. This can also aid plant growth, improve soil water retention capacity[26] and reduce fertilizer use.[27] Sustainable forest management is another tool that is used in carbon farming.[28] Carbon farming is one component of climate-smart agriculture. It is also one of the methods for carbon dioxide removal (CDR).

Agricultural methods for carbon farming include adjusting how tillage and livestock grazing is done, using organic mulch or compost, working with biochar and terra preta, and changing the crop types. Methods used in forestry include for example reforestation and bamboo farming.

Gender-responsive approach

Woman picking peas in the Mount Kenya region, for the Two Degrees Up[29] project, to look at the impact of climate change on agriculture

To increase the effectiveness and sustainability of CSA interventions, they must be designed to address gender inequalities and discriminations against people at risk.[30]: 1  Women farmers are more prone to climate risk than men are. In developing countries, women have less access compared to men to productive resources, financial capital, and advisory services. They often tend to be excluded from decision making which may impact on their adoption of technologies and practices that could help them adapt to climatic conditions. A gender-responsive approach to CSA tries to identify and address the diverse constraints faced by men and women and recognizes their specific capabilities.[30]

Climate-smart agriculture presents opportunities for women in agriculture to engage in sustainable production.[31]

Monitoring tools

FAO has identified several tools for countries and individuals to assess, monitor and evaluate integral parts of CSA planning and implementation:[32]

  1. Modelling System for Agricultural Impacts of Climate Change (MOSAICC)
  2. Global Livestock Environmental Assessment Model (GLEAM)
  3. Sustainability Assessment of Food and Agriculture (SAFA) system[33]
  4. Economics and Policy Innovations for Climate-Smart Agriculture (EPIC)
  5. Ex-Ante Carbon-balance Tool (EX-ACT)
  6. Climate Risk Management (CRM)
  7. Gender mainstreaming
  8. Monitoring and Assessment of Greenhouse Gas Emissions and Mitigation Potential in Agriculture (MAGHG) project

Major initiatives

European Green Deal

The EU has promoted the development of climate-smart agriculture and forestry practices[34] as part of the European Green Deal Policy.[35] A critical assessment of progress was carried out using different multi-criteria indices covering socio-economic, technical and environmental factors.[36] The results indicated that the most advanced CSA countries within the EU are Austria, Denmark and the Netherlands. The countries with the lowest levels of CSA penetration are Cyprus, Greece and Portugal. Key factors included labor productivity, female ownership of farmland, level of education, degree of poverty and social exclusion, energy consumption/efficiency and biomass/crop productivity.[36]

AIM for Climate

The Agriculture Innovation Mission for Climate (AIM for Climate/AIM4C) is a 5-year initiative to 2025, organized jointly by the UN, US and UAE.[37] The objective is to rally around climate-smart agriculture and food system innovations. It has attracted some 500 government and non-government organizations around the world and about US$10 billion from governments and US$3 billion from other sources.[38] The initiative was introduced during COP-26 in Glasgow.[39]

The CGIAR as part of the AIM4C summit in May 2023 called for a number of actions:[40] Integration of initiatives from the partner organizations, enabling innovative financing, production of radical policy and governance reform based on evidence. And lastly, promotion of project monitoring, evaluation, and learning

Global Roadmap to 2050 for Food and Agriculture

Global food systems GHG emissions in 2020 for different agriculture sectors in terms of gigatons of CO2 equivalents

Several actors are involved in creating pathways towards net-zero emissions in global food systems.[41]

Four areas of focus relate to:

  • lowered GHG-emission practices by increasing production efficiency
  • increased sequestration of carbon in croplands and grasslands
  • shifting of human diets away from livestock protein
  • taking on "new-horizon" technologies within the food systems

Livestock production (beef, pork, chicken, sheep and milk) alone accounts for 60% of total global food system GHG emissions.[41] Rice, maize and wheat stand for 25% of the global emissions from food systems.

Challenges

The greatest concern with CSA is that no universally acceptable standard exists against which those who call themselves "climate-smart" are actually acting climate smart. Until those certifications are created and met, skeptics are concerned that big businesses will just continue to use the name to 'greenwash' their organizations—or provide a false sense of environmental stewardship.[42] CSA can be seen as a meaningless label that is applicable to virtually anything, and this is deliberate as it is meant to conceal the social, political and environmental implications of the different technology choices.

In 2014 The Guardian reported that climate-smart agriculture had been criticized as a form of greenwashing.[43]

Contradictions surrounding practical value of CSA among consumers and suppliers may be the reason why the European Union is lagging with CSA implementation compared to other areas of the world.[44]

See also

References

  1. ^ a b c "Climate-Smart Agriculture". World Bank. Retrieved 2019-07-26.
  2. ^ a b c "Climate-Smart Agriculture". Food and Agriculture Organization of the United Nations. 2019-06-19. Retrieved 2019-07-26.
  3. ^ Das, Sharmistha; Chatterjee, Soumendu; Rajbanshi, Joy (2022-01-20). "Responses of soil organic carbon to conservation practices including climate-smart agriculture in tropical and subtropical regions: A meta-analysis". Science of the Total Environment. 805: 150428. Bibcode:2022ScTEn.805o0428D. doi:10.1016/j.scitotenv.2021.150428. ISSN 0048-9697. PMID 34818818. S2CID 240584637.
  4. ^ Deutsche Gesellschaft fur Internationale Zusammenarbeit (GIZ). "What is Climate Smart Agriculture?" (PDF). Retrieved 2022-06-04.
  5. ^ Gupta, Debaditya; Gujre, Nihal; Singha, Siddhartha; Mitra, Sudip (2022-11-01). "Role of existing and emerging technologies in advancing climate-smart agriculture through modeling: A review". Ecological Informatics. 71: 101805. doi:10.1016/j.ecoinf.2022.101805. ISSN 1574-9541. S2CID 252148026.
  6. ^ Lipper, Leslie; McCarthy, Nancy; Zilberman, David; Asfaw, Solomon; Branca, Giacomo (2018). Climate Smart Agriculture Building Resilience to Climate Change. Cham, Switzerland: Springer. p. 13. ISBN 978-3-319-61193-8.
  7. ^ "Climate-Smart Agriculture Policies and planning". Archived from the original on 2016-03-31.
  8. ^ Jennings, Paul A. (February 2008). "Dealing with Climate Change at the Local Level" (PDF). Chemical Engineering Progress. 104 (2). American Institute of Chemical Engineers: 40–44. Archived from the original (PDF) on 1 December 2008. Retrieved 29 February 2008.
  9. ^ Falkenmark, Malin; Rockstrom, Johan; Rockström, Johan (2004). Balancing Water for Humans and Nature: The New Approach in Ecohydrology. Earthscan. pp. 67–68. ISBN 978-1-85383-926-9.
  10. ^ Berthouly-Salazar, Cécile; Vigouroux, Yves; Billot, Claire; Scarcelli, Nora; Jankowski, Frédérique; Kane, Ndjido Ardo; Barnaud, Adeline; Burgarella, Concetta (2019). "Adaptive Introgression: An Untapped Evolutionary Mechanism for Crop Adaptation". Frontiers in Plant Science. 10: 4. doi:10.3389/fpls.2019.00004. ISSN 1664-462X. PMC 6367218. PMID 30774638.
  11. ^ "Diverse water sources key to food security: report". Reuters. 2010-09-06. Retrieved 2023-02-08.
  12. ^ "Adapting to climate change to sustain food security". International Livestock Research Institute. 16 November 2020.
  13. ^ "Food production is responsible for one-quarter of the world's greenhouse gas emissions". Our World in Data. Retrieved 2023-07-20.
  14. ^ a b c Friel, Sharon; Dangour, Alan D.; Garnett, Tara; et al. (2009). "Public health benefits of strategies to reduce greenhouse-gas emissions: food and agriculture". The Lancet. 374 (9706): 2016–2025. doi:10.1016/S0140-6736(09)61753-0. PMID 19942280. S2CID 6318195.
  15. ^ "The Food Gap: The Impacts of Climate Change on Food Production: a 2020 Perspective" (PDF). 2011. Archived from the original (PDF) on 16 April 2012.
  16. ^ Steinfeld H, Gerber P, Wassenaar T, Castel V, Rosales M, de Haan C (2006). Livestock's long shadow: environmental issues and options (PDF). Food and Agriculture Organization of the UN. ISBN 978-92-5-105571-7. Archived from the original (PDF) on 25 June 2008.
  17. ^ Intergovernmental Panel on Climate Change Archived 1 May 2007 at the Wayback Machine (IPCC)
  18. ^ Sharma, Gagan Deep; Shah, Muhammad Ibrahim; Shahzad, Umer; Jain, Mansi; Chopra, Ritika (1 November 2021). "Exploring the nexus between agriculture and greenhouse gas emissions in BIMSTEC region: The role of renewable energy and human capital as moderators". Journal of Environmental Management. 297: 113316. doi:10.1016/j.jenvman.2021.113316. ISSN 0301-4797. PMID 34293673.
  19. ^ "Carbon emissions from fertilizers could be reduced by as much as 80% by 2050". Science Daily. University of Cambridge. Retrieved 17 February 2023.
  20. ^ Thornton, P.K.; van de Steeg, J.; Notenbaert, A.; Herrero, M. (2009). "The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know". Agricultural Systems. 101 (3): 113–127. doi:10.1016/j.agsy.2009.05.002.
  21. ^ J, Kurukulasuriya, Pradeep H., Rosenthal, Shane. "Climate change and agriculture : a review of impacts and adaptations". World Bank. Retrieved 2023-11-03.{{cite web}}: CS1 maint: multiple names: authors list (link)
  22. ^ McMichael, A.J.; Campbell-Lendrum, D.H.; Corvalán, C.F.; et al. (2003). Climate Change and Human Health: Risks and Responses (PDF) (Report). World Health Organization. ISBN 92-4-156248-X.
  23. ^ Blanco G., R. Gerlagh, S. Suh, J. Barrett, H.C. de Coninck, C.F. Diaz Morejon, R. Mathur, N. Nakicenovic, A. Ofosu Ahenkora, J. Pan, H. Pathak, J. Rice, R. Richels, S.J. Smith, D.I. Stern, F.L. Toth, and P. Zhou, 2014: Chapter 5: Drivers, Trends and Mitigation. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  24. ^ The State of Food and Agriculture Climate Change, Agriculture and Food Security (PDF). Rome, Italy: Food and Agriculture Organization of the United Nations. 2016. pp. 43–66. ISBN 978-92-5-109374-0.
  25. ^ Nath, Arun Jyoti; Lal, Rattan; Das, Ashesh Kumar (2015-01-01). "Managing woody bamboos for carbon farming and carbon trading". Global Ecology and Conservation. 3: 654–663. doi:10.1016/j.gecco.2015.03.002. ISSN 2351-9894.
  26. ^ "Carbon Farming | Carbon Cycle Institute". www.carboncycle.org. Archived from the original on 2021-05-21. Retrieved 2018-04-27.
  27. ^ Almaraz, Maya; Wong, Michelle Y.; Geoghegan, Emily K.; Houlton, Benjamin Z. (2021). "A review of carbon farming impacts on nitrogen cycling, retention, and loss". Annals of the New York Academy of Sciences. 1505 (1): 102–117. doi:10.1111/nyas.14690. ISSN 0077-8923. S2CID 238202676.
  28. ^ Jindal, Rohit; Swallow, Brent; Kerr, John (2008). "Forestry-based carbon sequestration projects in Africa: Potential benefits and challenges". Natural Resources Forum. 32 (2): 116–130. doi:10.1111/j.1477-8947.2008.00176.x. ISSN 1477-8947.
  29. ^ "Two Degrees Up: climate change photofilms". ccafs.cgiar.org. 2013-06-18. Retrieved 2023-08-14.
  30. ^ a b "How to integrate gender issues in climate-smart agriculture projects" (PDF). Archived (PDF) from the original on 2020-10-21.
  31. ^ World Bank Group; FAO; IFAD (2015). "Gender in Climate-Smart Agriculture".
  32. ^ "Climate-Smart Agriculture Methods & Assessments". Archived from the original on 2016-04-07.
  33. ^ "Sustainability Pathways: FAQ".
  34. ^ Brochure Climate Smart Agriculture 2021 ec.europa.eu
  35. ^ "European Green Deal". climate.ec.europa.eu. 14 July 2021. Retrieved 2023-08-13.
  36. ^ a b Morkunas, Mangirdas; Volkov, Artiom (2023-06-01). "The Progress of the Development of a Climate-smart Agriculture in Europe: Is there Cohesion in the European Union?". Environmental Management. 71 (6): 1111–1127. doi:10.1007/s00267-022-01782-w. ISSN 1432-1009. PMID 36648532. S2CID 255941160.
  37. ^ "AIM for Climate". www.aimforclimate.org. Retrieved 2023-08-13.
  38. ^ National, The (2023-05-11). "Biden hails UAE partnership for advancing agricultural innovation and improving lives". The National. Retrieved 2023-08-13.
  39. ^ Service, SME News (2023-07-18). "Insight: AIM4C – Revolutionising Agriculture for Climate Resilience and Food Security". Sustainability Middle East News. Retrieved 2023-08-13.
  40. ^ "Enabling innovation for breakthroughs in agriculture: Key recommendations as the AIM for Climate Summit kicks off". CGIAR. Retrieved 2023-08-13.
  41. ^ a b Costa, Ciniro; Wollenberg, Eva; Benitez, Mauricio; Newman, Richard; Gardner, Nick; Bellone, Federico (2022-09-05). "Roadmap for achieving net-zero emissions in global food systems by 2050". Scientific Reports. 12 (1): 15064. Bibcode:2022NatSR..1215064C. doi:10.1038/s41598-022-18601-1. ISSN 2045-2322. PMC 9442557. PMID 36065006.
  42. ^ "The Debate Over 'Climate-Smart' Agriculture". Archived from the original on 2016-04-28.
  43. ^ Anderson, Teresa (17 October 2014). "Why 'climate-smart agriculture' isn't all it's cracked up to be". The Guardian. ISSN 0261-3077. Retrieved 2019-07-26 – via www.theguardian.com.
  44. ^ Long, Thomas B.; Blok, Vincent; Coninx, Ingrid (2016-01-20). "Barriers to the adoption and diffusion of technological innovations for climate-smart agriculture in Europe: evidence from the Netherlands, France, Switzerland and Italy". Journal of Cleaner Production. 112: 9–21. doi:10.1016/j.jclepro.2015.06.044. ISSN 0959-6526.
  • v
  • t
  • e
Overview
Overview
Sources
History
Physical
Flora and fauna
Social and economic
By country and region
Economics and finance
Energy
Preserving and enhancing
carbon sinks
Personal
Society and adaptation
Society
Adaptation
Communication
International agreements
Background and theory
Measurements
Theory
Research and modelling