Foster's theorem

In probability theory, Foster's theorem, named after Gordon Foster,[1] is used to draw conclusions about the positive recurrence of Markov chains with countable state spaces. It uses the fact that positive recurrent Markov chains exhibit a notion of "Lyapunov stability" in terms of returning to any state while starting from it within a finite time interval.

Theorem

Consider an irreducible discrete-time Markov chain on a countable state space S {\displaystyle S} having a transition probability matrix P {\displaystyle P} with elements p i j {\displaystyle p_{ij}} for pairs i {\displaystyle i} , j {\displaystyle j} in S {\displaystyle S} . Foster's theorem states that the Markov chain is positive recurrent if and only if there exists a Lyapunov function V : S R {\displaystyle V:S\to \mathbb {R} } , such that V ( i ) 0     i S {\displaystyle V(i)\geq 0{\text{ }}\forall {\text{ }}i\in S} and

  1. j S p i j V ( j ) < {\displaystyle \sum _{j\in S}p_{ij}V(j)<{\infty }} for i F {\displaystyle i\in F}
  2. j S p i j V ( j ) V ( i ) ε {\displaystyle \sum _{j\in S}p_{ij}V(j)\leq V(i)-\varepsilon } for all i F {\displaystyle i\notin F}

for some finite set F {\displaystyle F} and strictly positive ε {\displaystyle \varepsilon } .[2]

Related links

  • Lyapunov optimization

References

  1. ^ Foster, F. G. (1953). "On the Stochastic Matrices Associated with Certain Queuing Processes". The Annals of Mathematical Statistics. 24 (3): 355. doi:10.1214/aoms/1177728976. JSTOR 2236286.
  2. ^ Brémaud, P. (1999). "Lyapunov Functions and Martingales". Markov Chains. pp. 167. doi:10.1007/978-1-4757-3124-8_5. ISBN 978-1-4419-3131-3.


  • v
  • t
  • e