High-energy X-rays

(Learn how and when to remove this template message)

High-energy X-rays or HEX-rays are very hard X-rays, with typical energies of 80–1000 keV (1 MeV), about one order of magnitude higher than conventional X-rays used for X-ray crystallography (and well into gamma-ray energies over 120 keV). They are produced at modern synchrotron radiation sources such as the Cornell High Energy Synchrotron Source, SPring-8, and the beamlines ID15 and BM18 at the European Synchrotron Radiation Facility (ESRF). The main benefit is the deep penetration into matter which makes them a probe for thick samples in physics and materials science and permits an in-air sample environment and operation. Scattering angles are small and diffraction directed forward allows for simple detector setups.

High energy (megavolt) X-rays are also used in cancer therapy, using beams generated by linear accelerators to suppress tumors.[1]

Advantages

High-energy X-rays (HEX-rays) between 100 and 300 keV bear unique advantage over conventional hard X-rays, which lie in the range of 5–20 keV [2] They can be listed as follows:

Applications

Two-dimensional powder diffraction setup for high-energy X-rays. HEX-rays entering from the left are diffracted in forward direction at the sample and registered by a 2D detector such as an image plate.[2]

With these advantages, HEX-rays can be applied for a wide range of investigations. An overview, which is far from complete:

See also

References

  1. ^ Graham A. Colditz, The SAGE Encyclopedia of Cancer and Society, SAGE Publications, 2015, ISBN 1483345742 page 1329
  2. ^ a b Liss KD, Bartels A, Schreyer A, Clemens H (2003). "High energy X-rays: A tool for advanced bulk investigations in materials science and physics". Textures Microstruct. 35 (3/4): 219–52. doi:10.1080/07303300310001634952.

Further reading

External links