Itô isometry

In mathematics, the Itô isometry, named after Kiyoshi Itô, is a crucial fact about Itô stochastic integrals. One of its main applications is to enable the computation of variances for random variables that are given as Itô integrals.

Let W : [ 0 , T ] × Ω R {\displaystyle W:[0,T]\times \Omega \to \mathbb {R} } denote the canonical real-valued Wiener process defined up to time T > 0 {\displaystyle T>0} , and let X : [ 0 , T ] × Ω R {\displaystyle X:[0,T]\times \Omega \to \mathbb {R} } be a stochastic process that is adapted to the natural filtration F W {\displaystyle {\mathcal {F}}_{*}^{W}} of the Wiener process.[clarification needed] Then

E [ ( 0 T X t d W t ) 2 ] = E [ 0 T X t 2 d t ] , {\displaystyle \operatorname {E} \left[\left(\int _{0}^{T}X_{t}\,\mathrm {d} W_{t}\right)^{2}\right]=\operatorname {E} \left[\int _{0}^{T}X_{t}^{2}\,\mathrm {d} t\right],}

where E {\displaystyle \operatorname {E} } denotes expectation with respect to classical Wiener measure.

In other words, the Itô integral, as a function from the space L a d 2 ( [ 0 , T ] × Ω ) {\displaystyle L_{\mathrm {ad} }^{2}([0,T]\times \Omega )} of square-integrable adapted processes to the space L 2 ( Ω ) {\displaystyle L^{2}(\Omega )} of square-integrable random variables, is an isometry of normed vector spaces with respect to the norms induced by the inner products

( X , Y ) L a d 2 ( [ 0 , T ] × Ω ) := E ( 0 T X t Y t d t ) {\displaystyle {\begin{aligned}(X,Y)_{L_{\mathrm {ad} }^{2}([0,T]\times \Omega )}&:=\operatorname {E} \left(\int _{0}^{T}X_{t}\,Y_{t}\,\mathrm {d} t\right)\end{aligned}}}

and

( A , B ) L 2 ( Ω ) := E ( A B ) . {\displaystyle (A,B)_{L^{2}(\Omega )}:=\operatorname {E} (AB).}

As a consequence, the Itô integral respects these inner products as well, i.e. we can write

E [ ( 0 T X t d W t ) ( 0 T Y t d W t ) ] = E [ 0 T X t Y t d t ] {\displaystyle \operatorname {E} \left[\left(\int _{0}^{T}X_{t}\,\mathrm {d} W_{t}\right)\left(\int _{0}^{T}Y_{t}\,\mathrm {d} W_{t}\right)\right]=\operatorname {E} \left[\int _{0}^{T}X_{t}Y_{t}\,\mathrm {d} t\right]}

for X , Y L a d 2 ( [ 0 , T ] × Ω ) {\displaystyle X,Y\in L_{\mathrm {ad} }^{2}([0,T]\times \Omega )} .

References

  • Øksendal, Bernt K. (2003). Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin. ISBN 3-540-04758-1.