Kaniadakis statistics

Statistical physics approach
(Learn how and when to remove this template message)

Kaniadakis statistics (also known as κ-statistics) is a generalization of Boltzmann–Gibbs statistical mechanics,[1] based on a relativistic[2][3][4] generalization of the classical Boltzmann–Gibbs–Shannon entropy (commonly referred to as Kaniadakis entropy or κ-entropy). Introduced by the Greek Italian physicist Giorgio Kaniadakis in 2001,[5] κ-statistical mechanics preserve the main features of ordinary statistical mechanics and have attracted the interest of many researchers in recent years. The κ-distribution is currently considered one of the most viable candidates for explaining complex physical,[6][7] natural or artificial systems involving power-law tailed statistical distributions. Kaniadakis statistics have been adopted successfully in the description of a variety of systems in the fields of cosmology, astrophysics,[8][9] condensed matter, quantum physics,[10][11] seismology,[12][13] genomics,[14][15] economics,[16][17] epidemiology,[18] and many others.

Mathematical formalism

The mathematical formalism of κ-statistics is generated by κ-deformed functions, especially the κ-exponential function.

κ-exponential function

Plot of the κ-exponential function exp κ ( x ) {\displaystyle \exp _{\kappa }(x)} for three different κ-values. The solid black curve corresponding to the ordinary exponential function exp ( x ) {\displaystyle \exp(x)} ( κ = 0 {\displaystyle \kappa =0} ).

The Kaniadakis exponential (or κ-exponential) function is a one-parameter generalization of an exponential function, given by:

exp κ ( x ) = { ( 1 + κ 2 x 2 + κ x ) 1 κ if  0 < κ < 1. exp ( x ) if  κ = 0 , {\displaystyle \exp _{\kappa }(x)={\begin{cases}{\Big (}{\sqrt {1+\kappa ^{2}x^{2}}}+\kappa x{\Big )}^{\frac {1}{\kappa }}&{\text{if }}0<\kappa <1.\\[6pt]\exp(x)&{\text{if }}\kappa =0,\\[8pt]\end{cases}}}

with exp κ ( x ) = exp κ ( x ) {\displaystyle \exp _{-\kappa }(x)=\exp _{\kappa }(x)} .

The κ-exponential for 0 < κ < 1 {\displaystyle 0<\kappa <1} can also be written in the form:

exp κ ( x ) = exp ( 1 κ arcsinh ( κ x ) ) . {\displaystyle \exp _{\kappa }(x)=\exp {\Bigg (}{\frac {1}{\kappa }}{\text{arcsinh}}(\kappa x){\Bigg )}.}

The first five terms of the Taylor expansion of exp κ ( x ) {\displaystyle \exp _{\kappa }(x)} are given by:

exp κ ( x ) = 1 + x + x 2 2 + ( 1 κ 2 ) x 3 3 ! + ( 1 4 κ 2 ) x 4 4 ! + {\displaystyle \exp _{\kappa }(x)=1+x+{\frac {x^{2}}{2}}+(1-\kappa ^{2}){\frac {x^{3}}{3!}}+(1-4\kappa ^{2}){\frac {x^{4}}{4!}}+\cdots }

where the first three are the same as a typical exponential function.

Basic properties

The κ-exponential function has the following properties of an exponential function:

exp κ ( x ) C ( R ) {\displaystyle \exp _{\kappa }(x)\in \mathbb {C} ^{\infty }(\mathbb {R} )}
d d x exp κ ( x ) > 0 {\displaystyle {\frac {d}{dx}}\exp _{\kappa }(x)>0}
d 2 d x 2 exp κ ( x ) > 0 {\displaystyle {\frac {d^{2}}{dx^{2}}}\exp _{\kappa }(x)>0}
exp κ ( ) = 0 + {\displaystyle \exp _{\kappa }(-\infty )=0^{+}}
exp κ ( 0 ) = 1 {\displaystyle \exp _{\kappa }(0)=1}
exp κ ( + ) = + {\displaystyle \exp _{\kappa }(+\infty )=+\infty }
exp κ ( x ) exp κ ( x ) = 1 {\displaystyle \exp _{\kappa }(x)\exp _{\kappa }(-x)=-1}

For a real number r {\displaystyle r} , the κ-exponential has the property:

[ exp κ ( x ) ] r = exp κ / r ( r x ) {\displaystyle {\Big [}\exp _{\kappa }(x){\Big ]}^{r}=\exp _{\kappa /r}(rx)} .

κ-logarithm function

Plot of the κ-logarithmic function ln κ ( x ) {\displaystyle \ln _{\kappa }(x)} for three different κ-values. The solid black curve corresponding to the ordinary logarithmic function ln ( x ) {\displaystyle \ln(x)} ( κ = 0 {\displaystyle \kappa =0} ).

The Kaniadakis logarithm (or κ-logarithm) is a relativistic one-parameter generalization of the ordinary logarithm function,

ln κ ( x ) = { x κ x κ 2 κ if  0 < κ < 1 , ln ( x ) if  κ = 0 , {\displaystyle \ln _{\kappa }(x)={\begin{cases}{\frac {x^{\kappa }-x^{-\kappa }}{2\kappa }}&{\text{if }}0<\kappa <1,\\[8pt]\ln(x)&{\text{if }}\kappa =0,\\[8pt]\end{cases}}}

with ln κ ( x ) = ln κ ( x ) {\displaystyle \ln _{-\kappa }(x)=\ln _{\kappa }(x)} , which is the inverse function of the κ-exponential:

ln κ ( exp κ ( x ) ) = exp κ ( ln κ ( x ) ) = x . {\displaystyle \ln _{\kappa }{\Big (}\exp _{\kappa }(x){\Big )}=\exp _{\kappa }{\Big (}\ln _{\kappa }(x){\Big )}=x.}

The κ-logarithm for 0 < κ < 1 {\displaystyle 0<\kappa <1} can also be written in the form:

ln κ ( x ) = 1 κ sinh ( κ ln ( x ) ) {\displaystyle \ln _{\kappa }(x)={\frac {1}{\kappa }}\sinh {\Big (}\kappa \ln(x){\Big )}}

The first three terms of the Taylor expansion of ln κ ( x ) {\displaystyle \ln _{\kappa }(x)} are given by:

ln κ ( 1 + x ) = x x 2 2 + ( 1 + κ 2 2 ) x 3 3 {\displaystyle \ln _{\kappa }(1+x)=x-{\frac {x^{2}}{2}}+\left(1+{\frac {\kappa ^{2}}{2}}\right){\frac {x^{3}}{3}}-\cdots }

following the rule

ln κ ( 1 + x ) = n = 1 b n ( κ ) ( 1 ) n 1 x n n {\displaystyle \ln _{\kappa }(1+x)=\sum _{n=1}^{\infty }b_{n}(\kappa )\,(-1)^{n-1}\,{\frac {x^{n}}{n}}}

with b 1 ( κ ) = 1 {\displaystyle b_{1}(\kappa )=1} , and

b n ( κ ) ( x ) = { 1 if  n = 1 , 1 2 ( 1 κ ) ( 1 κ 2 ) . . . ( 1 κ n 1 ) , + 1 2 ( 1 + κ ) ( 1 + κ 2 ) . . . ( 1 + κ n 1 ) for  n > 1 , {\displaystyle b_{n}(\kappa )(x)={\begin{cases}1&{\text{if }}n=1,\\[8pt]{\frac {1}{2}}{\Big (}1-\kappa {\Big )}{\Big (}1-{\frac {\kappa }{2}}{\Big )}...{\Big (}1-{\frac {\kappa }{n-1}}{\Big )},\,+\,{\frac {1}{2}}{\Big (}1+\kappa {\Big )}{\Big (}1+{\frac {\kappa }{2}}{\Big )}...{\Big (}1+{\frac {\kappa }{n-1}}{\Big )}&{\text{for }}n>1,\\[8pt]\end{cases}}}

where b n ( 0 ) = 1 {\displaystyle b_{n}(0)=1} and b n ( κ ) = b n ( κ ) {\displaystyle b_{n}(-\kappa )=b_{n}(\kappa )} . The two first terms of the Taylor expansion of ln κ ( x ) {\displaystyle \ln _{\kappa }(x)} are the same as an ordinary logarithmic function.

Basic properties

The κ-logarithm function has the following properties of a logarithmic function:

ln κ ( x ) C ( R + ) {\displaystyle \ln _{\kappa }(x)\in \mathbb {C} ^{\infty }(\mathbb {R} ^{+})}
d d x ln κ ( x ) > 0 {\displaystyle {\frac {d}{dx}}\ln _{\kappa }(x)>0}
d 2 d x 2 ln κ ( x ) < 0 {\displaystyle {\frac {d^{2}}{dx^{2}}}\ln _{\kappa }(x)<0}
ln κ ( 0 + ) = {\displaystyle \ln _{\kappa }(0^{+})=-\infty }
ln κ ( 1 ) = 0 {\displaystyle \ln _{\kappa }(1)=0}
ln κ ( + ) = + {\displaystyle \ln _{\kappa }(+\infty )=+\infty }
ln κ ( 1 / x ) = ln κ ( x ) {\displaystyle \ln _{\kappa }(1/x)=-\ln _{\kappa }(x)}

For a real number r {\displaystyle r} , the κ-logarithm has the property:

ln κ ( x r ) = r ln r κ ( x ) {\displaystyle \ln _{\kappa }(x^{r})=r\ln _{r\kappa }(x)}

κ-Algebra

κ-sum

For any x , y R {\displaystyle x,y\in \mathbb {R} } and | κ | < 1 {\displaystyle |\kappa |<1} , the Kaniadakis sum (or κ-sum) is defined by the following composition law:

x κ y = x 1 + κ 2 y 2 + y 1 + κ 2 x 2 {\displaystyle x{\stackrel {\kappa }{\oplus }}y=x{\sqrt {1+\kappa ^{2}y^{2}}}+y{\sqrt {1+\kappa ^{2}x^{2}}}} ,

that can also be written in form:

x κ y = 1 κ sinh ( a r c s i n h ( κ x ) + a r c s i n h ( κ y ) ) {\displaystyle x{\stackrel {\kappa }{\oplus }}y={1 \over \kappa }\,\sinh \left({\rm {arcsinh}}\,(\kappa x)\,+\,{\rm {arcsinh}}\,(\kappa y)\,\right)} ,

where the ordinary sum is a particular case in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} : x 0 y = x + y {\displaystyle x{\stackrel {0}{\oplus }}y=x+y} .

The κ-sum, like the ordinary sum, has the following properties:

1. associativity: ( x κ y ) κ z = x κ ( y κ z ) {\displaystyle {\text{1. associativity:}}\quad (x{\stackrel {\kappa }{\oplus }}y){\stackrel {\kappa }{\oplus }}z=x{\stackrel {\kappa }{\oplus }}(y{\stackrel {\kappa }{\oplus }}z)}
2. neutral element: x κ 0 = 0 κ x = x {\displaystyle {\text{2. neutral element:}}\quad x{\stackrel {\kappa }{\oplus }}0=0{\stackrel {\kappa }{\oplus }}x=x}
3. opposite element: x κ ( x ) = ( x ) κ x = 0 {\displaystyle {\text{3. opposite element:}}\quad x{\stackrel {\kappa }{\oplus }}(-x)=(-x){\stackrel {\kappa }{\oplus }}x=0}
4. commutativity: x κ y = y κ x {\displaystyle {\text{4. commutativity:}}\quad x{\stackrel {\kappa }{\oplus }}y=y{\stackrel {\kappa }{\oplus }}x}

The κ-difference κ {\displaystyle {\stackrel {\kappa }{\ominus }}} is given by x κ y = x κ ( y ) {\displaystyle x{\stackrel {\kappa }{\ominus }}y=x{\stackrel {\kappa }{\oplus }}(-y)} .

The fundamental property exp κ ( x ) exp κ ( x ) = 1 {\displaystyle \exp _{\kappa }(-x)\exp _{\kappa }(x)=1} arises as a special case of the more general expression below: exp κ ( x ) exp κ ( y ) = e x p κ ( x κ y ) {\displaystyle \exp _{\kappa }(x)\exp _{\kappa }(y)=exp_{\kappa }(x{\stackrel {\kappa }{\oplus }}y)}

Furthermore, the κ-functions and the κ-sum present the following relationships:

ln κ ( x y ) = ln κ ( x ) κ ln κ ( y ) {\displaystyle \ln _{\kappa }(x\,y)=\ln _{\kappa }(x){\stackrel {\kappa }{\oplus }}\ln _{\kappa }(y)}

κ-product

For any x , y R {\displaystyle x,y\in \mathbb {R} } and | κ | < 1 {\displaystyle |\kappa |<1} , the Kaniadakis product (or κ-product) is defined by the following composition law:

x κ y = 1 κ sinh ( 1 κ a r c s i n h ( κ x ) a r c s i n h ( κ y ) ) {\displaystyle x{\stackrel {\kappa }{\otimes }}y={1 \over \kappa }\,\sinh \left(\,{1 \over \kappa }\,\,{\rm {arcsinh}}\,(\kappa x)\,\,{\rm {arcsinh}}\,(\kappa y)\,\right)} ,

where the ordinary product is a particular case in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} : x 0 y = x × y = x y {\displaystyle x{\stackrel {0}{\otimes }}y=x\times y=xy} .

The κ-product, like the ordinary product, has the following properties:

1. associativity: ( x κ y ) κ z = x κ ( y κ z ) {\displaystyle {\text{1. associativity:}}\quad (x{\stackrel {\kappa }{\otimes }}y){\stackrel {\kappa }{\otimes }}z=x{\stackrel {\kappa }{\otimes }}(y{\stackrel {\kappa }{\otimes }}z)}
2. neutral element: x κ I = I κ x = x for I = κ 1 sinh κ κ x = x {\displaystyle {\text{2. neutral element:}}\quad x{\stackrel {\kappa }{\otimes }}I=I{\stackrel {\kappa }{\otimes }}x=x\quad {\text{for}}\quad I=\kappa ^{-1}\sinh \kappa {\stackrel {\kappa }{\oplus }}x=x}
3. inverse element: x κ x ¯ = x ¯ κ x = I for x ¯ = κ 1 sinh ( κ 2 / a r c s i n h ( κ x ) ) {\displaystyle {\text{3. inverse element:}}\quad x{\stackrel {\kappa }{\otimes }}{\overline {x}}={\overline {x}}{\stackrel {\kappa }{\otimes }}x=I\quad {\text{for}}\quad {\overline {x}}=\kappa ^{-1}\sinh(\kappa ^{2}/{\rm {arcsinh}}\,(\kappa x))}
4. commutativity: x κ y = y κ x {\displaystyle {\text{4. commutativity:}}\quad x{\stackrel {\kappa }{\otimes }}y=y{\stackrel {\kappa }{\otimes }}x}

The κ-division κ {\displaystyle {\stackrel {\kappa }{\oslash }}} is given by x κ y = x κ y ¯ {\displaystyle x{\stackrel {\kappa }{\oslash }}y=x{\stackrel {\kappa }{\otimes }}{\overline {y}}} .

The κ-sum κ {\displaystyle {\stackrel {\kappa }{\oplus }}} and the κ-product κ {\displaystyle {\stackrel {\kappa }{\otimes }}} obey the distributive law: z κ ( x κ y ) = ( z κ x ) κ ( z κ y ) {\displaystyle z{\stackrel {\kappa }{\otimes }}(x{\stackrel {\kappa }{\oplus }}y)=(z{\stackrel {\kappa }{\otimes }}x){\stackrel {\kappa }{\oplus }}(z{\stackrel {\kappa }{\otimes }}y)} .

The fundamental property ln κ ( 1 / x ) = ln κ ( x ) {\displaystyle \ln _{\kappa }(1/x)=-\ln _{\kappa }(x)} arises as a special case of the more general expression below:

ln κ ( x y ) = ln κ ( x ) κ ln κ ( y ) {\displaystyle \ln _{\kappa }(x\,y)=\ln _{\kappa }(x){\stackrel {\kappa }{\oplus }}\ln _{\kappa }(y)}
Furthermore, the κ-functions and the κ-product present the following relationships:
exp κ ( x ) κ exp κ ( y ) = exp κ ( x + y ) {\displaystyle \exp _{\kappa }(x){\stackrel {\kappa }{\otimes }}\exp _{\kappa }(y)=\exp _{\kappa }(x\,+\,y)}
ln κ ( x κ y ) = ln κ ( x ) + ln κ ( y ) {\displaystyle \ln _{\kappa }(x\,{\stackrel {\kappa }{\otimes }}\,y)=\ln _{\kappa }(x)+\ln _{\kappa }(y)}

κ-Calculus

κ-Differential

The Kaniadakis differential (or κ-differential) of x {\displaystyle x} is defined by:

d κ x = d x 1 + κ 2 x 2 {\displaystyle \mathrm {d} _{\kappa }x={\frac {\mathrm {d} \,x}{\displaystyle {\sqrt {1+\kappa ^{2}\,x^{2}}}}}} .

So, the κ-derivative of a function f ( x ) {\displaystyle f(x)} is related to the Leibniz derivative through:

d f ( x ) d κ x = γ κ ( x ) d f ( x ) d x {\displaystyle {\frac {\mathrm {d} f(x)}{\mathrm {d} _{\kappa }x}}=\gamma _{\kappa }(x){\frac {\mathrm {d} f(x)}{\mathrm {d} x}}} ,

where γ κ ( x ) = 1 + κ 2 x 2 {\displaystyle \gamma _{\kappa }(x)={\sqrt {1+\kappa ^{2}x^{2}}}} is the Lorentz factor. The ordinary derivative d f ( x ) d x {\displaystyle {\frac {\mathrm {d} f(x)}{\mathrm {d} x}}} is a particular case of κ-derivative d f ( x ) d κ x {\displaystyle {\frac {\mathrm {d} f(x)}{\mathrm {d} _{\kappa }x}}} in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

κ-Integral

The Kaniadakis integral (or κ-integral) is the inverse operator of the κ-derivative defined through

d κ x f ( x ) = d x 1 + κ 2 x 2 f ( x ) {\displaystyle \int \mathrm {d} _{\kappa }x\,\,f(x)=\int {\frac {\mathrm {d} \,x}{\sqrt {1+\kappa ^{2}\,x^{2}}}}\,\,f(x)} ,

which recovers the ordinary integral in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

κ-Trigonometry

κ-Cyclic Trigonometry

Plot of the κ-sine and κ-cosine functions for {\displaystyle \kappa =0} (black curve) and {\displaystyle \kappa =0.1} (blue curve).
[click on the figure] Plot of the κ-sine and κ-cosine functions for κ = 0 {\displaystyle \kappa =0} (black curve) and κ = 0.1 {\displaystyle \kappa =0.1} (blue curve).

The Kaniadakis cyclic trigonometry (or κ-cyclic trigonometry) is based on the κ-cyclic sine (or κ-sine) and κ-cyclic cosine (or κ-cosine) functions defined by:

sin κ ( x ) = exp κ ( i x ) exp κ ( i x ) 2 i {\displaystyle \sin _{\kappa }(x)={\frac {\exp _{\kappa }(ix)-\exp _{\kappa }(-ix)}{2i}}} ,
cos κ ( x ) = exp κ ( i x ) + exp κ ( i x ) 2 {\displaystyle \cos _{\kappa }(x)={\frac {\exp _{\kappa }(ix)+\exp _{\kappa }(-ix)}{2}}} ,

where the κ-generalized Euler formula is

exp κ ( ± i x ) = cos κ ( x ) ± i sin κ ( x ) {\displaystyle \exp _{\kappa }(\pm ix)=\cos _{\kappa }(x)\pm i\sin _{\kappa }(x)} .:

The κ-cyclic trigonometry preserves fundamental expressions of the ordinary cyclic trigonometry, which is a special case in the limit κ → 0, such as:

cos κ 2 ( x ) + sin κ 2 ( x ) = 1 {\displaystyle \cos _{\kappa }^{2}(x)+\sin _{\kappa }^{2}(x)=1}
sin κ ( x κ y ) = sin κ ( x ) cos κ ( y ) + cos κ ( x ) sin κ ( y ) {\displaystyle \sin _{\kappa }(x{\stackrel {\kappa }{\oplus }}y)=\sin _{\kappa }(x)\cos _{\kappa }(y)+\cos _{\kappa }(x)\sin _{\kappa }(y)} .

The κ-cyclic tangent and κ-cyclic cotangent functions are given by:

tan κ ( x ) = sin κ ( x ) cos κ ( x ) {\displaystyle \tan _{\kappa }(x)={\frac {\sin _{\kappa }(x)}{\cos _{\kappa }(x)}}}
cot κ ( x ) = cos κ ( x ) sin κ ( x ) {\displaystyle \cot _{\kappa }(x)={\frac {\cos _{\kappa }(x)}{\sin _{\kappa }(x)}}} .

The κ-cyclic trigonometric functions become the ordinary trigonometric function in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

κ-Inverse cyclic function

The Kaniadakis inverse cyclic functions (or κ-inverse cyclic functions) are associated to the κ-logarithm:

a r c s i n κ ( x ) = i ln κ ( 1 x 2 + i x ) {\displaystyle {\rm {arcsin}}_{\kappa }(x)=-i\ln _{\kappa }\left({\sqrt {1-x^{2}}}+ix\right)} ,
a r c c o s κ ( x ) = i ln κ ( x 2 1 + x ) {\displaystyle {\rm {arccos}}_{\kappa }(x)=-i\ln _{\kappa }\left({\sqrt {x^{2}-1}}+x\right)} ,
a r c t a n κ ( x ) = i ln κ ( 1 i x 1 + i x ) {\displaystyle {\rm {arctan}}_{\kappa }(x)=i\ln _{\kappa }\left({\sqrt {\frac {1-ix}{1+ix}}}\right)} ,
a r c c o t κ ( x ) = i ln κ ( i x + 1 i x 1 ) {\displaystyle {\rm {arccot}}_{\kappa }(x)=i\ln _{\kappa }\left({\sqrt {\frac {ix+1}{ix-1}}}\right)} .

κ-Hyperbolic Trigonometry

The Kaniadakis hyperbolic trigonometry (or κ-hyperbolic trigonometry) is based on the κ-hyperbolic sine and κ-hyperbolic cosine given by:

sinh κ ( x ) = exp κ ( x ) exp κ ( x ) 2 {\displaystyle \sinh _{\kappa }(x)={\frac {\exp _{\kappa }(x)-\exp _{\kappa }(-x)}{2}}} ,
cosh κ ( x ) = exp κ ( x ) + exp κ ( x ) 2 {\displaystyle \cosh _{\kappa }(x)={\frac {\exp _{\kappa }(x)+\exp _{\kappa }(-x)}{2}}} ,

where the κ-Euler formula is

exp κ ( ± x ) = cosh κ ( x ) ± sinh κ ( x ) {\displaystyle \exp _{\kappa }(\pm x)=\cosh _{\kappa }(x)\pm \sinh _{\kappa }(x)} .

The κ-hyperbolic tangent and κ-hyperbolic cotangent functions are given by:

tanh κ ( x ) = sinh κ ( x ) cosh κ ( x ) {\displaystyle \tanh _{\kappa }(x)={\frac {\sinh _{\kappa }(x)}{\cosh _{\kappa }(x)}}}
coth κ ( x ) = cosh κ ( x ) sinh κ ( x ) {\displaystyle \coth _{\kappa }(x)={\frac {\cosh _{\kappa }(x)}{\sinh _{\kappa }(x)}}} .

The κ-hyperbolic trigonometric functions become the ordinary hyperbolic trigonometric functions in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

From the κ-Euler formula and the property exp κ ( x ) exp κ ( x ) = 1 {\displaystyle \exp _{\kappa }(-x)\exp _{\kappa }(x)=1} the fundamental expression of κ-hyperbolic trigonometry is given as follows:

cosh κ 2 ( x ) sinh κ 2 ( x ) = 1 {\displaystyle \cosh _{\kappa }^{2}(x)-\sinh _{\kappa }^{2}(x)=1}

κ-Inverse hyperbolic function

The Kaniadakis inverse hyperbolic functions (or κ-inverse hyperbolic functions) are associated to the κ-logarithm:

a r c s i n h κ ( x ) = ln κ ( 1 + x 2 + x ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {1+x^{2}}}+x\right)} ,
a r c c o s h κ ( x ) = ln κ ( x 2 1 + x ) {\displaystyle {\rm {arccosh}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {x^{2}-1}}+x\right)} ,
a r c t a n h κ ( x ) = ln κ ( 1 + x 1 x ) {\displaystyle {\rm {arctanh}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {\frac {1+x}{1-x}}}\right)} ,
a r c c o t h κ ( x ) = ln κ ( 1 x 1 + x ) {\displaystyle {\rm {arccoth}}_{\kappa }(x)=\ln _{\kappa }\left({\sqrt {\frac {1-x}{1+x}}}\right)} ,

in which are valid the following relations:

a r c s i n h κ ( x ) = s i g n ( x ) a r c c o s h κ ( 1 + x 2 ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)={\rm {sign}}(x){\rm {arccosh}}_{\kappa }\left({\sqrt {1+x^{2}}}\right)} ,
a r c s i n h κ ( x ) = a r c t a n h κ ( x 1 + x 2 ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)={\rm {arctanh}}_{\kappa }\left({\frac {x}{\sqrt {1+x^{2}}}}\right)} ,
a r c s i n h κ ( x ) = a r c c o t h κ ( 1 + x 2 x ) {\displaystyle {\rm {arcsinh}}_{\kappa }(x)={\rm {arccoth}}_{\kappa }\left({\frac {\sqrt {1+x^{2}}}{x}}\right)} .

The κ-cyclic and κ-hyperbolic trigonometric functions are connected by the following relationships:

s i n κ ( x ) = i s i n h κ ( i x ) {\displaystyle {\rm {sin}}_{\kappa }(x)=-i{\rm {sinh}}_{\kappa }(ix)} ,
c o s κ ( x ) = c o s h κ ( i x ) {\displaystyle {\rm {cos}}_{\kappa }(x)={\rm {cosh}}_{\kappa }(ix)} ,
t a n κ ( x ) = i t a n h κ ( i x ) {\displaystyle {\rm {tan}}_{\kappa }(x)=-i{\rm {tanh}}_{\kappa }(ix)} ,
c o t κ ( x ) = i c o t h κ ( i x ) {\displaystyle {\rm {cot}}_{\kappa }(x)=i{\rm {coth}}_{\kappa }(ix)} ,
a r c s i n κ ( x ) = i a r c s i n h κ ( i x ) {\displaystyle {\rm {arcsin}}_{\kappa }(x)=-i\,{\rm {arcsinh}}_{\kappa }(ix)} ,
a r c c o s κ ( x ) i a r c c o s h κ ( i x ) {\displaystyle {\rm {arccos}}_{\kappa }(x)\neq -i\,{\rm {arccosh}}_{\kappa }(ix)} ,
a r c t a n κ ( x ) = i a r c t a n h κ ( i x ) {\displaystyle {\rm {arctan}}_{\kappa }(x)=-i\,{\rm {arctanh}}_{\kappa }(ix)} ,
a r c c o t κ ( x ) = i a r c c o t h κ ( i x ) {\displaystyle {\rm {arccot}}_{\kappa }(x)=i\,{\rm {arccoth}}_{\kappa }(ix)} .

Kaniadakis entropy

The Kaniadakis statistics is based on the Kaniadakis κ-entropy, which is defined through:

S κ ( p ) = i p i ln κ ( p i ) = i p i ln κ ( 1 p i ) {\displaystyle S_{\kappa }{\big (}p{\big )}=-\sum _{i}p_{i}\ln _{\kappa }{\big (}p_{i}{\big )}=\sum _{i}p_{i}\ln _{\kappa }{\bigg (}{\frac {1}{p_{i}}}{\bigg )}}

where p = { p i = p ( x i ) ; x R ; i = 1 , 2 , . . . , N ; i p i = 1 } {\displaystyle p=\{p_{i}=p(x_{i});x\in \mathbb {R} ;i=1,2,...,N;\sum _{i}p_{i}=1\}} is a probability distribution function defined for a random variable X {\displaystyle X} , and 0 | κ | < 1 {\displaystyle 0\leq |\kappa |<1} is the entropic index.

The Kaniadakis κ-entropy is thermodynamically and Lesche stable[19][20] and obeys the Shannon-Khinchin axioms of continuity, maximality, generalized additivity and expandability.

Kaniadakis distributions

A Kaniadakis distribution (or κ-distribution) is a probability distribution derived from the maximization of Kaniadakis entropy under appropriate constraints. In this regard, several probability distributions emerge for analyzing a wide variety of phenomenology associated with experimental power-law tailed statistical distributions.

κ-Exponential distribution

κ-Gaussian distribution

κ-Gamma distribution

κ-Weibull distribution

κ-Logistic distribution

Kaniadakis integral transform

κ-Laplace Transform

The Kaniadakis Laplace transform (or κ-Laplace transform) is a κ-deformed integral transform of the ordinary Laplace transform. The κ-Laplace transform converts a function f {\displaystyle f} of a real variable t {\displaystyle t} to a new function F κ ( s ) {\displaystyle F_{\kappa }(s)} in the complex frequency domain, represented by the complex variable s {\displaystyle s} . This κ-integral transform is defined as:[21]

F κ ( s ) = L κ { f ( t ) } ( s ) = 0 f ( t ) [ exp κ ( t ) ] s d t {\displaystyle F_{\kappa }(s)={\cal {L}}_{\kappa }\{f(t)\}(s)=\int _{\,0}^{\infty }\!f(t)\,[\exp _{\kappa }(-t)]^{s}\,dt}

The inverse κ-Laplace transform is given by:

f ( t ) = L κ 1 { F κ ( s ) } ( t ) = 1 2 π i c i c + i F κ ( s ) [ exp κ ( t ) ] s 1 + κ 2 t 2 d s {\displaystyle f(t)={\cal {L}}_{\kappa }^{-1}\{F_{\kappa }(s)\}(t)={{\frac {1}{2\pi i}}\int _{c-i\infty }^{c+i\infty }\!F_{\kappa }(s)\,{\frac {[\exp _{\kappa }(t)]^{s}}{\sqrt {1+\kappa ^{2}t^{2}}}}\,ds}}

The ordinary Laplace transform and its inverse transform are recovered as κ 0 {\displaystyle \kappa \rightarrow 0} .

Properties

Let two functions f ( t ) = L κ 1 { F κ ( s ) } ( t ) {\displaystyle f(t)={\cal {L}}_{\kappa }^{-1}\{F_{\kappa }(s)\}(t)} and g ( t ) = L κ 1 { G κ ( s ) } ( t ) {\displaystyle g(t)={\cal {L}}_{\kappa }^{-1}\{G_{\kappa }(s)\}(t)} , and their respective κ-Laplace transforms F κ ( s ) {\displaystyle F_{\kappa }(s)} and G κ ( s ) {\displaystyle G_{\kappa }(s)} , the following table presents the main properties of κ-Laplace transform:[21]

Properties of the κ-Laplace transform
Property f ( t ) {\displaystyle f(t)} F κ ( s ) {\displaystyle F_{\kappa }(s)}
Linearity a f ( t ) + b g ( t ) {\displaystyle a\,f(t)+b\,g(t)} a F κ ( s ) + b G κ ( s ) {\displaystyle a\,F_{\kappa }(s)+b\,G_{\kappa }(s)}
Time scaling f ( a t ) {\displaystyle f(at)} 1 a F κ / a ( s a ) {\displaystyle {\frac {1}{a}}\,F_{\kappa /a}({\frac {s}{a}})}
Frequency shifting f ( t ) [ exp κ ( t ) ] a {\displaystyle f(t)\,[\exp _{\kappa }(-t)]^{a}} F κ ( s a ) {\displaystyle F_{\kappa }(s-a)}
Derivative d f ( t ) d t {\displaystyle {\frac {d\,f(t)}{dt}}} s L κ { f ( t ) 1 + κ 2 t 2 } ( s ) f ( 0 ) {\displaystyle s\,{\cal {L}}_{\kappa }\left\{{\frac {f(t)}{\sqrt {1+\kappa ^{2}t^{2}}}}\right\}(s)-f(0)}
Derivative d d t 1 + κ 2 t 2 f ( t ) {\displaystyle {\frac {d}{dt}}\,{\sqrt {1+\kappa ^{2}t^{2}}}\,f(t)} s F κ ( s ) f ( 0 ) {\displaystyle s\,F_{\kappa }(s)-f(0)}
Time-domain integration 1 1 + κ 2 t 2 0 t f ( w ) d w {\displaystyle {\frac {1}{\sqrt {1+\kappa ^{2}t^{2}}}}\,\int _{0}^{t}f(w)dw} 1 s F κ ( s ) {\displaystyle {\frac {1}{s}}\,F_{\kappa }(s)}
f ( t ) [ ln ( exp κ ( t ) ) ] n {\displaystyle f(t)\,[\ln(\exp _{\kappa }(t))]^{n}} ( 1 ) n d n F κ ( s ) d s n {\displaystyle (-1)^{n}{\frac {d^{n}F_{\kappa }(s)}{ds^{n}}}}
f ( t ) [ ln ( exp κ ( t ) ) ] n {\displaystyle f(t)\,[\ln(\exp _{\kappa }(t))]^{-n}} s + d w n w n + d w n 1 . . . w 3 + d w 2 w 2 + d w 1 F κ ( w 1 ) {\displaystyle \int _{s}^{+\infty }dw_{n}\int _{w_{n}}^{+\infty }dw_{n-1}...\int _{w_{3}}^{+\infty }dw_{2}\int _{w_{2}}^{+\infty }dw_{1}\,F_{\kappa }(w_{1})}
Dirac delta-function δ ( t τ ) {\displaystyle \delta (t-\tau )} [ exp κ ( τ ) ] s {\displaystyle [\exp _{\kappa }(-\tau )]^{s}}
Heaviside unit function u ( t τ ) {\displaystyle u(t-\tau )} s 1 + κ 2 τ 2 + κ 2 τ s 2 κ 2 [ exp κ ( τ ) ] s {\displaystyle {\frac {s{\sqrt {1+\kappa ^{2}\tau ^{2}}}+\kappa ^{2}\tau }{s^{2}-\kappa ^{2}}}\,[\exp _{\kappa }(-\tau )]^{s}}
Power function t ν 1 {\displaystyle t^{\nu -1}} s 2 s 2 κ 2 ν 2 Γ κ s ( ν + 1 ) ν s ν = s s + | κ | ν Γ ( ν ) | 2 κ | ν Γ ( s | 2 κ | ν 2 ) Γ ( s | 2 κ | + ν 2 ) {\displaystyle {\frac {s^{2}}{s^{2}-\kappa ^{2}\nu ^{2}}}\,{\frac {\Gamma _{\frac {\kappa }{s}}(\nu +1)}{\nu \,s^{\nu }}}={\frac {s}{s+|\kappa |\nu }}\,{\frac {\Gamma (\nu )}{|2\kappa |^{\nu }}}\,{\frac {\Gamma \left({\frac {s}{|2\kappa |}}-{\frac {\nu }{2}}\right)}{\Gamma \left({\frac {s}{|2\kappa |}}+{\frac {\nu }{2}}\right)}}}
Power function t 2 m 1 ,     m Z + {\displaystyle t^{2m-1},\ \ m\in Z^{+}} ( 2 m 1 ) ! j = 1 m [ s 2 ( 2 j ) 2 κ 2 ] {\displaystyle {\frac {(2m-1)!}{\prod _{j=1}^{m}\left[s^{2}-(2j)^{2}\kappa ^{2}\right]}}}
Power function t 2 m ,     m Z + {\displaystyle t^{2m},\ \ m\in Z^{+}} ( 2 m ) ! s j = 1 m + 1 [ s 2 ( 2 j 1 ) 2 κ 2 ] {\displaystyle {\frac {(2m)!\,s}{\prod _{j=1}^{m+1}\left[s^{2}-(2j-1)^{2}\kappa ^{2}\right]}}}

The κ-Laplace transforms presented in the latter table reduce to the corresponding ordinary Laplace transforms in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

κ-Fourier Transform

The Kaniadakis Fourier transform (or κ-Fourier transform) is a κ-deformed integral transform of the ordinary Fourier transform, which is consistent with the κ-algebra and the κ-calculus. The κ-Fourier transform is defined as:[22]

F κ [ f ( x ) ] ( ω ) = 1 2 π + f ( x ) exp κ ( x κ ω ) i d κ x {\displaystyle {\cal {F}}_{\kappa }[f(x)](\omega )={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }f(x)\,\exp _{\kappa }(-x\otimes _{\kappa }\omega )^{i}\,d_{\kappa }x}

which can be rewritten as

F κ [ f ( x ) ] ( ω ) = 1 2 π + f ( x ) exp ( i x { κ } ω { κ } ) 1 + κ 2 x 2 d x {\displaystyle {\cal {F}}_{\kappa }[f(x)](\omega )={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }f(x)\,{\exp(-i\,x_{\{\kappa \}}\,\omega _{\{\kappa \}}) \over {\sqrt {1+\kappa ^{2}\,x^{2}}}}\,dx}

where x { κ } = 1 κ a r c s i n h ( κ x ) {\displaystyle x_{\{\kappa \}}={\frac {1}{\kappa }}\,{\rm {arcsinh}}\,(\kappa \,x)} and ω { κ } = 1 κ a r c s i n h ( κ ω ) {\displaystyle \omega _{\{\kappa \}}={\frac {1}{\kappa }}\,{\rm {arcsinh}}\,(\kappa \,\omega )} . The κ-Fourier transform imposes an asymptotically log-periodic behavior by deforming the parameters x {\displaystyle x} and ω {\displaystyle \omega } in addition to a damping factor, namely 1 + κ 2 x 2 {\displaystyle {\sqrt {1+\kappa ^{2}\,x^{2}}}} .

Real (top panel) and imaginary (bottom panel) part of the kernel h κ ( x , ω ) {\displaystyle h_{\kappa }(x,\omega )} for typical κ {\displaystyle \kappa } -values and ω = 1 {\displaystyle \omega =1} .

The kernel of the κ-Fourier transform is given by:

h κ ( x , ω ) = exp ( i x { κ } ω { κ } ) 1 + κ 2 x 2 {\displaystyle h_{\kappa }(x,\omega )={\frac {\exp(-i\,x_{\{\kappa \}}\,\omega _{\{\kappa \}})}{\sqrt {1+\kappa ^{2}\,x^{2}}}}}

The inverse κ-Fourier transform is defined as:[22]

F κ [ f ^ ( ω ) ] ( x ) = 1 2 π + f ^ ( ω ) exp κ ( ω κ x ) i d κ ω {\displaystyle {\cal {F}}_{\kappa }[{\hat {f}}(\omega )](x)={1 \over {\sqrt {2\,\pi }}}\int \limits _{-\infty }\limits ^{+\infty }{\hat {f}}(\omega )\,\exp _{\kappa }(\omega \otimes _{\kappa }x)^{i}\,d_{\kappa }\omega }

Let u κ ( x ) = 1 κ cosh ( κ ln ( x ) ) {\displaystyle u_{\kappa }(x)={\frac {1}{\kappa }}\cosh {\Big (}\kappa \ln(x){\Big )}} , the following table shows the κ-Fourier transforms of several notable functions:[22]

κ-Fourier transform of several functions
f ( x ) {\displaystyle f(x)} F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }[f(x)](\omega )}
Step function θ ( x ) {\displaystyle \theta (x)} 2 π δ ( ω ) + 1 2 π i ω { κ } {\displaystyle {\sqrt {2\,\pi }}\,\delta (\omega )+{1 \over {\sqrt {2\,\pi }}\,i\,\omega _{\{\kappa \}}}}
Modulation cos κ ( a κ x ) {\displaystyle \cos _{\kappa }(a{\stackrel {\kappa }{\oplus }}x)} π 2 u κ ( exp κ ( a ) ) ( δ ( ω + a ) + δ ( ω a ) ) {\displaystyle {\sqrt {\pi \over 2}}\,u_{\kappa }(\exp _{\kappa }(a))\,\left(\delta (\omega +a)+\delta (\omega -a)\right)}
Causal κ {\displaystyle \kappa } -exponential θ ( x ) exp κ ( a κ x ) {\displaystyle \theta (x)\,\exp _{\kappa }(-a{\stackrel {\kappa }{\otimes }}x)} 1 2 π 1 a { κ } + i ω { κ } {\displaystyle {1 \over {\sqrt {2\,\pi }}}{1 \over a_{\{\kappa \}}+i\,\omega _{\{\kappa \}}}}
Symmetric κ {\displaystyle \kappa } -exponential exp κ ( a κ | x | ) {\displaystyle \exp _{\kappa }(-a{\stackrel {\kappa }{\otimes }}|x|)} 2 π a { κ } a { κ } 2 + ω { κ } 2 {\displaystyle {\sqrt {2 \over \pi }}\,{a_{\{\kappa \}} \over a_{\{\kappa \}}^{2}+\omega _{\{\kappa \}}^{2}}}
Constant 1 {\displaystyle 1} 2 π δ ( ω ) {\displaystyle {\sqrt {2\,\pi }}\,\delta (\omega )}
κ {\displaystyle \kappa } -Phasor exp κ ( a κ x ) i {\displaystyle \exp _{\kappa }\,(a{\stackrel {\kappa }{\otimes }}x)^{i}} 2 π u κ ( exp κ ( a ) ) δ ( ω a ) {\displaystyle {\sqrt {2\,\pi }}\,u_{\kappa }(\exp _{\kappa }(a))\,\delta (\omega -a)}
Impuslse δ ( x a ) {\displaystyle \delta (x-a)} 1 2 π exp κ ( ω κ a ) i u κ ( exp κ ( a ) ) {\displaystyle {1 \over {\sqrt {2\,\pi }}}{\exp _{\kappa }\,(\omega {\stackrel {\kappa }{\otimes }}a)^{i} \over u_{\kappa }\left(\exp _{\kappa }\,(a)\right)}}
Signum Sgn ( x ) {\displaystyle (x)} 2 π 1 i ω { κ } {\displaystyle {\sqrt {2 \over \pi }}\,\,{1 \over i\,\omega _{\{\kappa \}}}}
Rectangular Π ( x a ) {\displaystyle \Pi \left({x \over a}\right)} 2 π a { κ } s i n c κ ( ω κ a ) {\displaystyle {\sqrt {2 \over \pi }}\,\,a_{\{\kappa \}}\,{\rm {sinc}}_{\kappa }(\omega {\stackrel {\kappa }{\otimes }}a)}

The κ-deformed version of the Fourier transform preserves the main properties of the ordinary Fourier transform, as summarized in the following table.

κ-Fourier properties
f ( x ) {\displaystyle f(x)} F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }[f(x)](\omega )}
Linearity F κ [ α f ( x ) + β g ( x ) ] ( ω ) = α F κ [ f ( x ) ] ( ω ) + β F κ [ g ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }[\alpha \,f(x)+\beta \,g(x)](\omega )=\alpha \,{\cal {F}}_{\kappa }[f(x)](\omega )+\beta \,{\cal {F}}_{\kappa }[g(x)](\omega )}
Scaling F κ [ f ( α x ) ] ( ω ) = 1 α F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[f(\alpha \,x)\right](\omega )={1 \over \alpha }\,{\cal {F}}_{\kappa ^{\prime }}\left[f(x)\right](\omega ^{\prime })}
where κ = κ / α {\displaystyle \kappa ^{\prime }=\kappa /\alpha } and ω = ( a / κ ) sinh ( a r c s i n h ( κ ω ) / a 2 ) {\displaystyle \omega ^{\prime }=(a/\kappa )\,\sinh \left({\rm {arcsinh}}(\kappa \,\omega )/a^{2}\right)}
κ {\displaystyle \kappa } -Scaling F κ [ f ( α κ x ) ] ( ω ) = 1 α { κ } F κ [ f ( x ) ] ( 1 α κ ω ) {\displaystyle {\cal {F}}_{\kappa }\left[f(\alpha {\stackrel {\kappa }{\otimes }}x)\right](\omega )={1 \over \alpha _{\{\kappa \}}}\,{\cal {F}}_{\kappa }[f(x)]\left({\frac {1}{\alpha }}{\stackrel {\kappa }{\otimes }}\omega \right)}
Complex conjugation F κ [ f ( x ) ] ( ω ) = F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }{\big [}f(x){\big ]}^{\ast }(\omega )={\cal {F}}_{\kappa }{\big [}f(x){\big ]}(-\omega )}
Duality F κ [ F κ [ f ( x ) ] ( ν ) ] ( ω ) = f ( ω ) {\displaystyle {\cal {F}}_{\kappa }{\Big [}{\cal {F}}_{\kappa }{\big [}f(x){\big ]}(\nu ){\Big ]}(\omega )=f(-\omega )}
Reverse F κ [ f ( x ) ] ( ω ) = F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[f(-x)\right](\omega )={\cal {F}}_{\kappa }[f(x)](-\omega )}
κ {\displaystyle \kappa } -Frequency shift F κ [ exp κ ( ω 0 κ x ) i f ( x ) ] ( ω ) = F κ [ f ( x ) ] ( ω κ ω 0 ) {\displaystyle {\cal {F}}_{\kappa }\left[\exp _{\kappa }(\omega _{0}{\stackrel {\kappa }{\otimes }}x)^{i}f(x)\right](\omega )={\cal {F}}_{\kappa }[f(x)](\omega {\stackrel {\kappa }{\ominus }}\omega _{0})}
κ {\displaystyle \kappa } -Time shift F κ [ f ( x κ x 0 ) ] ( ω ) = exp κ ( ω κ x 0 ) i F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[f(x\,{\stackrel {\kappa }{\oplus }}\,x_{0})\right](\omega )=\exp _{\kappa }(\omega \,{\stackrel {\kappa }{\otimes }}\,x_{0})^{i}\,{\cal {F}}_{\kappa }[f(x)](\omega )}
Transform of κ {\displaystyle \kappa } -derivative F κ [ d f ( x ) d κ x ] ( ω ) = i ω { κ } F κ [ f ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[{\frac {d\,f(x)}{d_{\kappa }x}}\right](\omega )=i\,\omega _{\{\kappa \}}\,{\cal {F}}_{\kappa }[f(x)](\omega )}
κ {\displaystyle \kappa } -Derivative of transform d d κ ω F κ [ f ( x ) ] ( ω ) = i ω { κ } F κ [ x { κ } f ( x ) ] ( ω ) {\displaystyle {\frac {d}{d_{\kappa }\omega }}\,{\cal {F}}_{\kappa }[f(x)](\omega )=-i\,\omega _{\{\kappa \}}\,{\cal {F}}_{\kappa }\left[x_{\{\kappa \}}\,f(x)\right](\omega )}
Transform of integral F κ [ x f ( y ) d y ] ( ω ) = 1 i ω { κ } F κ [ f ( x ) ] ( ω ) + 2 π F κ [ f ( x ) ] ( 0 ) δ ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[\int \limits _{-\infty }\limits ^{x}f(y)\,dy\right](\omega )={1 \over i\,\omega _{\{\kappa \}}}{\cal {F}}_{\kappa }[f(x)](\omega )+2\,\pi \,{\cal {F}}_{\kappa }[f(x)](0)\,\delta (\omega )}
κ {\displaystyle \kappa } -Convolution F κ [ ( f κ g ) ( x ) ] ( ω ) = 2 π F κ [ f ( x ) ] ( ω ) F κ [ g ( x ) ] ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[(f\,{\stackrel {\kappa }{\circledast }}\,g)(x)\right](\omega )={\sqrt {2\,\pi }}\,{\cal {F}}_{\kappa }[f(x)](\omega )\,{\cal {F}}_{\kappa }[g(x)](\omega )}
where ( f κ g ) ( x ) = + f ( y ) g ( x κ y ) d κ y {\displaystyle (f\,{\stackrel {\kappa }{\circledast }}\,g)(x)=\int \limits _{-\infty }\limits ^{+\infty }f(y)\,g(x\,{\stackrel {\kappa }{\ominus }}\,y)\,d_{\kappa }y}
Modulation F κ [ f ( x ) g ( x ) ] ( ω ) = 1 2 π ( F κ [ f ( x ) ] κ F κ [ g ( x ) ] ) ( ω ) {\displaystyle {\cal {F}}_{\kappa }\left[f(x)\,g(x)\right](\omega )={1 \over {\sqrt {2\,\pi }}}\left({\cal {F}}_{\kappa }\left[f(x)\right]\,{\stackrel {\kappa }{\circledast }}\,{\cal {F}}_{\kappa }\left[g(x)\right]\right)(\omega )}

The properties of the κ-Fourier transform presented in the latter table reduce to the corresponding ordinary Fourier transforms in the classical limit κ 0 {\displaystyle \kappa \rightarrow 0} .

See also

References

  1. ^ Kaniadakis, G. (2009). "Relativistic entropy and related Boltzmann kinetics". The European Physical Journal A. 40 (3): 275–287. arXiv:0901.1058. Bibcode:2009EPJA...40..275K. doi:10.1140/epja/i2009-10793-6. ISSN 1434-6001. S2CID 119190011.
  2. ^ Kaniadakis, G. (2002). "Statistical mechanics in the context of special relativity". Physical Review E. 66 (5): 056125. arXiv:cond-mat/0210467. Bibcode:2002PhRvE..66e6125K. doi:10.1103/PhysRevE.66.056125. ISSN 1063-651X. PMID 12513574. S2CID 45635888.
  3. ^ Kaniadakis, G. (2005). "Statistical mechanics in the context of special relativity. II". Physical Review E. 72 (3): 036108. arXiv:cond-mat/0507311. Bibcode:2005PhRvE..72c6108K. doi:10.1103/PhysRevE.72.036108. ISSN 1539-3755. PMID 16241516. S2CID 18115408.
  4. ^ Kaniadakis, G. (2011). "Power-law tailed statistical distributions and Lorentz transformations". Physics Letters A. 375 (3): 356–359. arXiv:1110.3944. Bibcode:2011PhLA..375..356K. doi:10.1016/j.physleta.2010.11.057. ISSN 0375-9601. S2CID 118435479.
  5. ^ Kaniadakis, G. (2001). "Non-linear kinetics underlying generalized statistics". Physica A: Statistical Mechanics and Its Applications. 296 (3): 405–425. arXiv:cond-mat/0103467. Bibcode:2001PhyA..296..405K. doi:10.1016/S0378-4371(01)00184-4. ISSN 0378-4371. S2CID 44275064.
  6. ^ Kaniadakis, G. (2009). "Maximum entropy principle and power-law tailed distributions". The European Physical Journal B. 70 (1): 3–13. arXiv:0904.4180. Bibcode:2009EPJB...70....3K. doi:10.1140/epjb/e2009-00161-0. ISSN 1434-6028. S2CID 55421804.
  7. ^ Kaniadakis, G. (2021). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv:2203.01743. Bibcode:2021EL....13310002K. doi:10.1209/0295-5075/133/10002. ISSN 0295-5075. S2CID 234144356.
  8. ^ Carvalho, J. C.; Silva, R.; do Nascimento Jr., J. D.; De Medeiros, J. R. (2008). "Power law statistics and stellar rotational velocities in the Pleiades". EPL (Europhysics Letters). 84 (5): 59001. arXiv:0903.0836. Bibcode:2008EL.....8459001C. doi:10.1209/0295-5075/84/59001. ISSN 0295-5075. S2CID 7123391.
  9. ^ Curé, Michel; Rial, Diego F.; Christen, Alejandra; Cassetti, Julia (2014). "A method to deconvolve stellar rotational velocities". Astronomy & Astrophysics. 565: A85. arXiv:1401.1054. Bibcode:2014A&A...565A..85C. doi:10.1051/0004-6361/201323344. ISSN 0004-6361. S2CID 59375612.
  10. ^ Ourabah, Kamel; Hamici-Bendimerad, Amel Hiba; Tribeche, Mouloud (2015). "Quantum entanglement and Kaniadakis entropy". Physica Scripta. 90 (4): 045101. Bibcode:2015PhyS...90d5101O. doi:10.1088/0031-8949/90/4/045101. ISSN 0031-8949. S2CID 123776127.
  11. ^ Abreu, Everton M. C.; Ananias Neto, Jorge; Mendes, Albert C. R.; de Paula, Rodrigo M. (2019). "Loop quantum gravity Immirzi parameter and the Kaniadakis statistics". Chaos, Solitons & Fractals. 118: 307–310. arXiv:1808.01891. Bibcode:2019CSF...118..307A. doi:10.1016/j.chaos.2018.11.033. ISSN 0960-0779. S2CID 119207713.
  12. ^ Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014). "Finite-size effects on return interval distributions for weakest-link-scaling systems". Physical Review E. 89 (5): 052142. arXiv:1308.1881. Bibcode:2014PhRvE..89e2142H. doi:10.1103/PhysRevE.89.052142. ISSN 1539-3755. PMID 25353774. S2CID 22310350.
  13. ^ da Silva, Sérgio Luiz E. F. (2021). "κ-generalised Gutenberg–Richter law and the self-similarity of earthquakes". Chaos, Solitons & Fractals. 143: 110622. Bibcode:2021CSF...14310622D. doi:10.1016/j.chaos.2020.110622. ISSN 0960-0779. S2CID 234063959.
  14. ^ Souza, N. T. C. M.; Anselmo, D. H. A. L.; Silva, R.; Vasconcelos, M. S.; Mello, V. D. (2014). "A κ -statistical analysis of the Y-chromosome". EPL (Europhysics Letters). 108 (3): 38004. doi:10.1209/0295-5075/108/38004. ISSN 0295-5075. S2CID 122456729.
  15. ^ Costa, M. O.; Silva, R.; Anselmo, D. H. A. L.; Silva, J. R. P. (2019). "Analysis of human DNA through power-law statistics". Physical Review E. 99 (2): 022112. Bibcode:2019PhRvE..99b2112C. doi:10.1103/PhysRevE.99.022112. ISSN 2470-0045. PMID 30934358. S2CID 91186653.
  16. ^ Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (2012). "A new model of income distribution: the κ-generalized distribution". Journal of Economics. 105 (1): 63–91. doi:10.1007/s00712-011-0221-0. hdl:11393/73598. ISSN 0931-8658. S2CID 155080665.
  17. ^ Trivellato, Barbara (2013). "Deformed Exponentials and Applications to Finance". Entropy. 15 (12): 3471–3489. Bibcode:2013Entrp..15.3471T. doi:10.3390/e15093471. ISSN 1099-4300.
  18. ^ Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki; Lucia, Umberto (2020). "The κ-statistics approach to epidemiology". Scientific Reports. 10 (1): 19949. arXiv:2012.00629. Bibcode:2020NatSR..1019949K. doi:10.1038/s41598-020-76673-3. ISSN 2045-2322. PMC 7673996. PMID 33203913.
  19. ^ Abe, S.; Kaniadakis, G.; Scarfone, A. M. (2004) [2004]. "Stabilities of generalized entropies". Journal of Physics A: Mathematical and General. 37 (44): 10513–10519. arXiv:cond-mat/0401290. Bibcode:2004JPhA...3710513A. doi:10.1088/0305-4470/37/44/004. S2CID 16080176.
  20. ^ Kaniadakis, G. (2001). "H-theorem and generalized entropies within the framework of nonlinear kinetics". Physics Letters A. 288 (5–6): 283–291. arXiv:cond-mat/0109192. Bibcode:2001PhLA..288..283K. doi:10.1016/S0375-9601(01)00543-6. S2CID 119445915.
  21. ^ a b Kaniadakis, Giorgio (2013-09-25). "Theoretical Foundations and Mathematical Formalism of the Power-Law Tailed Statistical Distributions". Entropy. 15 (12): 3983–4010. arXiv:1309.6536. Bibcode:2013Entrp..15.3983K. doi:10.3390/e15103983. ISSN 1099-4300.
  22. ^ a b c Scarfone, A.M. (2017). "κ -deformed Fourier transform". Physica A: Statistical Mechanics and Its Applications. 480: 63–78. arXiv:2206.06869. Bibcode:2017PhyA..480...63S. doi:10.1016/j.physa.2017.03.036. S2CID 126079408.

External links