Newton–Cartan theory

Geometrical re-formulation of Newtonian gravity.

Newton–Cartan theory (or geometrized Newtonian gravitation) is a geometrical re-formulation, as well as a generalization, of Newtonian gravity first introduced by Élie Cartan[1][2] and Kurt Friedrichs[3] and later developed by Dautcourt,[4] Dixon,[5] Dombrowski and Horneffer, Ehlers, Havas,[6] Künzle,[7] Lottermoser, Trautman,[8] and others. In this re-formulation, the structural similarities between Newton's theory and Albert Einstein's general theory of relativity are readily seen, and it has been used by Cartan and Friedrichs to give a rigorous formulation of the way in which Newtonian gravity can be seen as a specific limit of general relativity, and by Jürgen Ehlers to extend this correspondence to specific solutions of general relativity.

Classical spacetimes

In Newton–Cartan theory, one starts with a smooth four-dimensional manifold M {\displaystyle M} and defines two (degenerate) metrics. A temporal metric t a b {\displaystyle t_{ab}} with signature ( 1 , 0 , 0 , 0 ) {\displaystyle (1,0,0,0)} , used to assign temporal lengths to vectors on M {\displaystyle M} and a spatial metric h a b {\displaystyle h^{ab}} with signature ( 0 , 1 , 1 , 1 ) {\displaystyle (0,1,1,1)} . One also requires that these two metrics satisfy a transversality (or "orthogonality") condition, h a b t b c = 0 {\displaystyle h^{ab}t_{bc}=0} . Thus, one defines a classical spacetime as an ordered quadruple ( M , t a b , h a b , ) {\displaystyle (M,t_{ab},h^{ab},\nabla )} , where t a b {\displaystyle t_{ab}} and h a b {\displaystyle h^{ab}} are as described, {\displaystyle \nabla } is a metrics-compatible covariant derivative operator; and the metrics satisfy the orthogonality condition. One might say that a classical spacetime is the analog of a relativistic spacetime ( M , g a b ) {\displaystyle (M,g_{ab})} , where g a b {\displaystyle g_{ab}} is a smooth Lorentzian metric on the manifold M {\displaystyle M} .

Geometric formulation of Poisson's equation

In Newton's theory of gravitation, Poisson's equation reads

Δ U = 4 π G ρ {\displaystyle \Delta U=4\pi G\rho \,}

where U {\displaystyle U} is the gravitational potential, G {\displaystyle G} is the gravitational constant and ρ {\displaystyle \rho } is the mass density. The weak equivalence principle motivates a geometric version of the equation of motion for a point particle in the potential U {\displaystyle U}

m t x ¨ = m g U {\displaystyle m_{t}\,{\ddot {\vec {x}}}=-m_{g}{\vec {\nabla }}U}

where m t {\displaystyle m_{t}} is the inertial mass and m g {\displaystyle m_{g}} the gravitational mass. Since, according to the weak equivalence principle m t = m g {\displaystyle m_{t}=m_{g}} , the corresponding equation of motion

x ¨ = U {\displaystyle {\ddot {\vec {x}}}=-{\vec {\nabla }}U}

no longer contains a reference to the mass of the particle. Following the idea that the solution of the equation then is a property of the curvature of space, a connection is constructed so that the geodesic equation

d 2 x λ d s 2 + Γ μ ν λ d x μ d s d x ν d s = 0 {\displaystyle {\frac {d^{2}x^{\lambda }}{ds^{2}}}+\Gamma _{\mu \nu }^{\lambda }{\frac {dx^{\mu }}{ds}}{\frac {dx^{\nu }}{ds}}=0}

represents the equation of motion of a point particle in the potential U {\displaystyle U} . The resulting connection is

Γ μ ν λ = γ λ ρ U , ρ Ψ μ Ψ ν {\displaystyle \Gamma _{\mu \nu }^{\lambda }=\gamma ^{\lambda \rho }U_{,\rho }\Psi _{\mu }\Psi _{\nu }}

with Ψ μ = δ μ 0 {\displaystyle \Psi _{\mu }=\delta _{\mu }^{0}} and γ μ ν = δ A μ δ B ν δ A B {\displaystyle \gamma ^{\mu \nu }=\delta _{A}^{\mu }\delta _{B}^{\nu }\delta ^{AB}} ( A , B = 1 , 2 , 3 {\displaystyle A,B=1,2,3} ). The connection has been constructed in one inertial system but can be shown to be valid in any inertial system by showing the invariance of Ψ μ {\displaystyle \Psi _{\mu }} and γ μ ν {\displaystyle \gamma ^{\mu \nu }} under Galilei-transformations. The Riemann curvature tensor in inertial system coordinates of this connection is then given by

R κ μ ν λ = 2 γ λ σ U , σ [ μ Ψ ν ] Ψ κ {\displaystyle R_{\kappa \mu \nu }^{\lambda }=2\gamma ^{\lambda \sigma }U_{,\sigma [\mu }\Psi _{\nu ]}\Psi _{\kappa }}

where the brackets A [ μ ν ] = 1 2 ! [ A μ ν A ν μ ] {\displaystyle A_{[\mu \nu ]}={\frac {1}{2!}}[A_{\mu \nu }-A_{\nu \mu }]} mean the antisymmetric combination of the tensor A μ ν {\displaystyle A_{\mu \nu }} . The Ricci tensor is given by

R κ ν = Δ U Ψ κ Ψ ν {\displaystyle R_{\kappa \nu }=\Delta U\Psi _{\kappa }\Psi _{\nu }\,}

which leads to following geometric formulation of Poisson's equation

R μ ν = 4 π G ρ Ψ μ Ψ ν {\displaystyle R_{\mu \nu }=4\pi G\rho \Psi _{\mu }\Psi _{\nu }}

More explicitly, if the roman indices i and j range over the spatial coordinates 1, 2, 3, then the connection is given by

Γ 00 i = U , i {\displaystyle \Gamma _{00}^{i}=U_{,i}}

the Riemann curvature tensor by

R 0 j 0 i = R 00 j i = U , i j {\displaystyle R_{0j0}^{i}=-R_{00j}^{i}=U_{,ij}}

and the Ricci tensor and Ricci scalar by

R = R 00 = Δ U {\displaystyle R=R_{00}=\Delta U}

where all components not listed equal zero.

Note that this formulation does not require introducing the concept of a metric: the connection alone gives all the physical information.

Bargmann lift

It was shown that four-dimensional Newton–Cartan theory of gravitation can be reformulated as Kaluza–Klein reduction of five-dimensional Einstein gravity along a null-like direction.[9] This lifting is considered to be useful for non-relativistic holographic models.[10]

References

  1. ^ Cartan, Élie (1923), "Sur les variétés à connexion affine et la théorie de la relativité généralisée (Première partie)" (PDF), Annales Scientifiques de l'École Normale Supérieure, 40: 325, doi:10.24033/asens.751
  2. ^ Cartan, Élie (1924), "Sur les variétés à connexion affine, et la théorie de la relativité généralisée (Première partie) (Suite)" (PDF), Annales Scientifiques de l'École Normale Supérieure, 41: 1, doi:10.24033/asens.753
  3. ^ Friedrichs, K. O. (1927), "Eine Invariante Formulierung des Newtonschen Gravitationsgesetzes und der Grenzüberganges vom Einsteinschen zum Newtonschen Gesetz", Mathematische Annalen, 98: 566–575, doi:10.1007/bf01451608, S2CID 121571333
  4. ^ Dautcourt, G. (1964), "Die Newtonische Gravitationstheorie als strenger Grenzfall der allgemeinen Relativitätstheorie", Acta Physica Polonica, 65: 637–646
  5. ^ Dixon, W. G. (1975), "On the uniqueness of the Newtonian theory as a geometric theory of gravitation", Communications in Mathematical Physics, 45 (2): 167–182, Bibcode:1975CMaPh..45..167D, doi:10.1007/bf01629247, S2CID 120158054
  6. ^ Havas, P. (1964), "Four-dimensional formulations of Newtonian mechanics and their relation to the special and general theory of relativity", Reviews of Modern Physics, 36 (4): 938–965, Bibcode:1964RvMP...36..938H, doi:10.1103/revmodphys.36.938
  7. ^ Künzle, H. (1976), "Covariant Newtonian limts of Lorentz space-times", General Relativity and Gravitation, 7 (5): 445–457, Bibcode:1976GReGr...7..445K, doi:10.1007/bf00766139, S2CID 117098049
  8. ^ Trautman, A. (1965), Deser, Jürgen; Ford, K. W. (eds.), Foundations and current problems of general relativity, vol. 98, Englewood Cliffs, New Jersey: Prentice-Hall, pp. 1–248
  9. ^ Duval, C.; Burdet, G.; Künzle, H. P.; Perrin, M. (1985). "Bargmann structures and Newton-Cartan theory". Physical Review D. 31 (8): 1841–1853. Bibcode:1985PhRvD..31.1841D. doi:10.1103/PhysRevD.31.1841. PMID 9955910.
  10. ^ Goldberger, Walter D. (2009). "AdS/CFT duality for non-relativistic field theory". Journal of High Energy Physics. 2009 (3): 069. arXiv:0806.2867. Bibcode:2009JHEP...03..069G. doi:10.1088/1126-6708/2009/03/069. S2CID 118553009.

Bibliography

  • Cartan, Élie (1923), "Sur les variétés à connexion affine et la théorie de la relativité généralisée (Première partie)" (PDF), Annales Scientifiques de l'École Normale Supérieure, 40: 325, doi:10.24033/asens.751
  • Cartan, Élie (1924), "Sur les variétés à connexion affine, et la théorie de la relativité généralisée (Première partie) (Suite)" (PDF), Annales Scientifiques de l'École Normale Supérieure, 41: 1, doi:10.24033/asens.753
  • Cartan, Élie (1955), Œuvres complètes, vol. III/1, Gauthier-Villars, pp. 659, 799
  • Renn, Jürgen; Schemmel, Matthias, eds. (2007), The Genesis of General Relativity, vol. 4, Springer, pp. 1107–1129 (English translation of Ann. Sci. Éc. Norm. Supér. #40 paper)
  • Chapter 1 of Ehlers, Jürgen (1973), "Survey of general relativity theory", in Israel, Werner (ed.), Relativity, Astrophysics and Cosmology, D. Reidel, pp. 1–125, ISBN 90-277-0369-8
  • v
  • t
  • e
Publications
Other writingsContributionsNewtonianism
Personal lifeRelations
Depictions
NamesakeCategories
Isaac Newton
Stub icon

This relativity-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e