Pascal's simplex

The first five layers of Pascal's 3-simplex (Pascal's pyramid). Each face (orange grid) is Pascal's 2-simplex (Pascal's triangle). Arrows show derivation of two example terms.

In mathematics, Pascal's simplex is a generalisation of Pascal's triangle into arbitrary number of dimensions, based on the multinomial theorem.

Generic Pascal's m-simplex

Let m (m > 0) be a number of terms of a polynomial and n (n ≥ 0) be a power the polynomial is raised to.

Let {\displaystyle \wedge } m denote a Pascal's m-simplex. Each Pascal's m-simplex is a semi-infinite object, which consists of an infinite series of its components.

Let {\displaystyle \wedge } m
n
denote its nth component, itself a finite (m − 1)-simplex with the edge length n, with a notational equivalent n m 1 {\displaystyle \vartriangle _{n}^{m-1}} .

nth component

n m = n m 1 {\displaystyle \wedge _{n}^{m}=\vartriangle _{n}^{m-1}} consists of the coefficients of multinomial expansion of a polynomial with m terms raised to the power of n:

| x | n = | k | = n ( n k ) x k ;     x R m ,   k N 0 m ,   n N 0 ,   m N {\displaystyle |x|^{n}=\sum _{|k|=n}{{\binom {n}{k}}x^{k}};\ \ x\in \mathbb {R} ^{m},\ k\in \mathbb {N} _{0}^{m},\ n\in \mathbb {N} _{0},\ m\in \mathbb {N} }

where | x | = i = 1 m x i ,   | k | = i = 1 m k i ,   x k = i = 1 m x i k i {\displaystyle \textstyle |x|=\sum _{i=1}^{m}{x_{i}},\ |k|=\sum _{i=1}^{m}{k_{i}},\ x^{k}=\prod _{i=1}^{m}{x_{i}^{k_{i}}}} .

Example for ⋀4

Pascal's 4-simplex (sequence A189225 in the OEIS), sliced along the k4. All points of the same color belong to the same nth component, from red (for n = 0) to blue (for n = 3).

First four components of Pascal's 4-simplex.

Specific Pascal's simplices

Pascal's 1-simplex

{\displaystyle \wedge } 1 is not known by any special name.

First four components of Pascal's line.

nth component

n 1 = n 0 {\displaystyle \wedge _{n}^{1}=\vartriangle _{n}^{0}} (a point) is the coefficient of multinomial expansion of a polynomial with 1 term raised to the power of n:

( x 1 ) n = k 1 = n ( n k 1 ) x 1 k 1 ;     k 1 , n N 0 {\displaystyle (x_{1})^{n}=\sum _{k_{1}=n}{n \choose k_{1}}x_{1}^{k_{1}};\ \ k_{1},n\in \mathbb {N} _{0}}
Arrangement of n 0 {\displaystyle \vartriangle _{n}^{0}}
( n n ) {\displaystyle \textstyle {n \choose n}}

which equals 1 for all n.

Pascal's 2-simplex

2 {\displaystyle \wedge ^{2}} is known as Pascal's triangle (sequence A007318 in the OEIS).

First four components of Pascal's triangle.

nth component

n 2 = n 1 {\displaystyle \wedge _{n}^{2}=\vartriangle _{n}^{1}} (a line) consists of the coefficients of binomial expansion of a polynomial with 2 terms raised to the power of n:

( x 1 + x 2 ) n = k 1 + k 2 = n ( n k 1 , k 2 ) x 1 k 1 x 2 k 2 ;     k 1 , k 2 , n N 0 {\displaystyle (x_{1}+x_{2})^{n}=\sum _{k_{1}+k_{2}=n}{n \choose k_{1},k_{2}}x_{1}^{k_{1}}x_{2}^{k_{2}};\ \ k_{1},k_{2},n\in \mathbb {N} _{0}}
Arrangement of n 1 {\displaystyle \vartriangle _{n}^{1}}
( n n , 0 ) , ( n n 1 , 1 ) , , ( n 1 , n 1 ) , ( n 0 , n ) {\displaystyle \textstyle {n \choose n,0},{n \choose n-1,1},\cdots ,{n \choose 1,n-1},{n \choose 0,n}}

Pascal's 3-simplex

3 {\displaystyle \wedge ^{3}} is known as Pascal's tetrahedron (sequence A046816 in the OEIS).

First four components of Pascal's tetrahedron.

nth component

n 3 = n 2 {\displaystyle \wedge _{n}^{3}=\vartriangle _{n}^{2}} (a triangle) consists of the coefficients of trinomial expansion of a polynomial with 3 terms raised to the power of n:

( x 1 + x 2 + x 3 ) n = k 1 + k 2 + k 3 = n ( n k 1 , k 2 , k 3 ) x 1 k 1 x 2 k 2 x 3 k 3 ;     k 1 , k 2 , k 3 , n N 0 {\displaystyle (x_{1}+x_{2}+x_{3})^{n}=\sum _{k_{1}+k_{2}+k_{3}=n}{n \choose k_{1},k_{2},k_{3}}x_{1}^{k_{1}}x_{2}^{k_{2}}x_{3}^{k_{3}};\ \ k_{1},k_{2},k_{3},n\in \mathbb {N} _{0}}
Arrangement of n 2 {\displaystyle \vartriangle _{n}^{2}}
( n n , 0 , 0 ) , ( n n 1 , 1 , 0 ) , , ( n 1 , n 1 , 0 ) , ( n 0 , n , 0 ) ( n n 1 , 0 , 1 ) , ( n n 2 , 1 , 1 ) , , ( n 0 , n 1 , 1 ) ( n 1 , 0 , n 1 ) , ( n 0 , 1 , n 1 ) ( n 0 , 0 , n ) {\displaystyle {\begin{aligned}\textstyle {n \choose n,0,0}&,\textstyle {n \choose n-1,1,0},\cdots \cdots ,{n \choose 1,n-1,0},{n \choose 0,n,0}\\\textstyle {n \choose n-1,0,1}&,\textstyle {n \choose n-2,1,1},\cdots \cdots ,{n \choose 0,n-1,1}\\&\vdots \\\textstyle {n \choose 1,0,n-1}&,\textstyle {n \choose 0,1,n-1}\\\textstyle {n \choose 0,0,n}\end{aligned}}}

Properties

Inheritance of components

n m = n m 1 {\displaystyle \wedge _{n}^{m}=\vartriangle _{n}^{m-1}} is numerically equal to each (m − 1)-face (there is m + 1 of them) of n m = n m + 1 {\displaystyle \vartriangle _{n}^{m}=\wedge _{n}^{m+1}} , or:

n m = n m 1   n m = n m + 1 {\displaystyle \wedge _{n}^{m}=\vartriangle _{n}^{m-1}\subset \ \vartriangle _{n}^{m}=\wedge _{n}^{m+1}}

From this follows, that the whole m {\displaystyle \wedge ^{m}} is (m + 1)-times included in m + 1 {\displaystyle \wedge ^{m+1}} , or:

m m + 1 {\displaystyle \wedge ^{m}\subset \wedge ^{m+1}}

Example

1 {\displaystyle \wedge ^{1}} 2 {\displaystyle \wedge ^{2}} 3 {\displaystyle \wedge ^{3}} 4 {\displaystyle \wedge ^{4}}
0 m {\displaystyle \wedge _{0}^{m}}
 1 
   1
   1
   1
1 m {\displaystyle \wedge _{1}^{m}}
 1 
  1 1
  1 1
   1
  1 1        1
   1
2 m {\displaystyle \wedge _{2}^{m}}
 1 
 1 2 1
 1 2 1
  2 2
   1
 1 2 1      2 2      1
  2 2        2
   1
3 m {\displaystyle \wedge _{3}^{m}}
 1 
1 3 3 1
1 3 3 1
 3 6 3
  3 3
   1
1 3 3 1    3 6 3    3 3    1
 3 6 3      6 6      3
  3 3        3
   1

For more terms in the above array refer to (sequence A191358 in the OEIS)

Equality of sub-faces

Conversely, n m + 1 = n m {\displaystyle \wedge _{n}^{m+1}=\vartriangle _{n}^{m}} is (m + 1)-times bounded by n m 1 = n m {\displaystyle \vartriangle _{n}^{m-1}=\wedge _{n}^{m}} , or:

n m + 1 = n m n m 1 = n m {\displaystyle \wedge _{n}^{m+1}=\vartriangle _{n}^{m}\supset \vartriangle _{n}^{m-1}=\wedge _{n}^{m}}

From this follows, that for given n, all i-faces are numerically equal in nth components of all Pascal's (m > i)-simplices, or:

n i + 1 = n i n m > i = n m > i + 1 {\displaystyle \wedge _{n}^{i+1}=\vartriangle _{n}^{i}\subset \vartriangle _{n}^{m>i}=\wedge _{n}^{m>i+1}}

Example

The 3rd component (2-simplex) of Pascal's 3-simplex is bounded by 3 equal 1-faces (lines). Each 1-face (line) is bounded by 2 equal 0-faces (vertices):

2-simplex   1-faces of 2-simplex         0-faces of 1-face

 1 3 3 1    1 . . .  . . . 1  1 3 3 1    1 . . .   . . . 1
  3 6 3      3 . .    . . 3    . . .
   3 3        3 .      . 3      . .
    1          1        1        .

Also, for all m and all n:

1 = n 1 = n 0 n m 1 = n m {\displaystyle 1=\wedge _{n}^{1}=\vartriangle _{n}^{0}\subset \vartriangle _{n}^{m-1}=\wedge _{n}^{m}}

Number of coefficients

For the nth component ((m − 1)-simplex) of Pascal's m-simplex, the number of the coefficients of multinomial expansion it consists of is given by:

( ( n 1 ) + ( m 1 ) ( m 1 ) ) + ( n + ( m 2 ) ( m 2 ) ) = ( n + ( m 1 ) ( m 1 ) ) = ( ( m n ) ) , {\displaystyle {(n-1)+(m-1) \choose (m-1)}+{n+(m-2) \choose (m-2)}={n+(m-1) \choose (m-1)}=\left(\!\!{\binom {m}{n}}\!\!\right),}

(where the latter is the multichoose notation). We can see this either as a sum of the number of coefficients of an (n − 1)th component ((m − 1)-simplex) of Pascal's m-simplex with the number of coefficients of an nth component ((m − 2)-simplex) of Pascal's (m − 1)-simplex, or by a number of all possible partitions of an nth power among m exponents.

Example

Number of coefficients of nth component ((m − 1)-simplex) of Pascal's m-simplex
m-simplex nth component n = 0 n = 1 n = 2 n = 3 n = 4 n = 5
1-simplex 0-simplex 1 1 1 1 1 1
2-simplex 1-simplex 1 2 3 4 5 6
3-simplex 2-simplex 1 3 6 10 15 21
4-simplex 3-simplex 1 4 10 20 35 56
5-simplex 4-simplex 1 5 15 35 70 126
6-simplex 5-simplex 1 6 21 56 126 252

The terms of this table comprise a Pascal triangle in the format of a symmetric Pascal matrix.

Symmetry

An nth component ((m − 1)-simplex) of Pascal's m-simplex has the (m!)-fold spatial symmetry.

Geometry

Orthogonal axes k1, ..., km in m-dimensional space, vertices of component at n on each axis, the tip at [0, ..., 0] for n = 0.

Numeric construction

Wrapped nth power of a big number gives instantly the nth component of a Pascal's simplex.

| b d p | n = | k | = n ( n k ) b d p k ;     b , d N ,   n N 0 ,   k , p N 0 m ,   p :   p 1 = 0 , p i = ( n + 1 ) i 2 {\displaystyle \left|b^{dp}\right|^{n}=\sum _{|k|=n}{{\binom {n}{k}}b^{dp\cdot k}};\ \ b,d\in \mathbb {N} ,\ n\in \mathbb {N} _{0},\ k,p\in \mathbb {N} _{0}^{m},\ p:\ p_{1}=0,p_{i}=(n+1)^{i-2}}

where b d p = ( b d p 1 , , b d p m ) N m ,   p k = i = 1 m p i k i N 0 {\displaystyle \textstyle b^{dp}=(b^{dp_{1}},\cdots ,b^{dp_{m}})\in \mathbb {N} ^{m},\ p\cdot k={\sum _{i=1}^{m}{p_{i}k_{i}}}\in \mathbb {N} _{0}} .