Pozyton

Pozyton
ilustracja
Klasyfikacja

lepton, fermion

Symbol

e+

Ładunek

+e 1,60217653(14) × 10-19 C

Masa

5,485 799 09(27) × 10–4 u
9,10938 × 10-31kg
0,510 998 918(44) MeV/c²

Czas życia T1/2

trwała

Spin

1/2

Zobacz hasło pozyton w Wikisłowniku

Pozyton, antyelektron (nazywany też pozytronem wskutek kalkowania ang. nazwy positron) – elementarna cząstka antymaterii oznaczana symbolem e+, będąca antycząstką elektronu. Należy do grupy leptonów[1].

Jej ładunek elektryczny jest równy +1 (jednostce ładunku elementarnego), masa jest równa masie elektronu. Spin pozytonu jest połówkowy.

Cechą charakterystyczną jest fakt, że po spotkaniu elektronu z pozytonem najczęściej, bo z prawdopodobieństwem 99,8%, dochodzi do anihilacji na dwa kwanty gamma. Fotony anihilacyjne emitowane są wówczas (w układzie środka masy) w dokładnie przeciwnych kierunkach. Muszą być spełnione zasady zachowania ładunku, pędu jak i energii, stąd też energia każdego z kwantów przy anihilacji dwufotonowej jest równa 511 keV. Obserwowane są również inne kanały anihilacji, wśród których można wymienić anihilację 3-fotonową (3QA), jednak są one znacznie mniej prawdopodobne – na przykład przekrój czynny na anihilację dwufotonową jest 371 razy większy od przekroju na anihilację trójfotonową.

Źródła i zastosowanie pozytonów

Antyelektrony powstają przede wszystkim przy promieniowaniu beta plus. W rozpadzie tym proton w jądrze atomowym ulega przemianie na neutron, pozyton oraz neutrino, np.

11 22 N a 10 22 N e + e + + ν e {\displaystyle _{11}^{22}\mathrm {Na} \rightarrow _{10}^{22}\mathrm {Ne} +\mathrm {e} ^{+}+\mathrm {\nu } _{e}}

Spośród ok. 200 istniejących w przyrodzie takich izotopów tylko część używana jest do badań. Kryterium jest tu maksymalna energia emitowanego pozytonu oraz czas połowicznego rozpadu izotopu. W badaniach materiałowych szczególnie chętnie wykorzystuje się izotop 22Na lub 68Ge.

Pozytony stosuje się w badaniach materiałowych, przede wszystkim do znajdowania defektów struktury krystalicznej, w medycynie do obrazowania w pozytonowej tomografii emisyjnej.

Historia odkrycia

Istnienie pozytonu zostało przewidziane teoretycznie w roku 1928 przez Paula Diraca. Po raz pierwszy zaobserwowany został w komorze mgłowej cztery lata później w roku 1932 przez Carla Andersona. Dirac interpretował pozyton jako dziurę w tzw. morzu Diraca[2], z kolei Richard Feynman rozważał go jako cząstkę poruszającą się do tyłu w czasie. Po odkryciu pozytonu m.in. małżonkowie Joliot-Curie zaobserwowali tworzenie się pozytonium, czyli stanu związanego e+e-.

Przypisy

  1. pozyton, [w:] Encyklopedia PWN [dostęp 2022-09-15] .
  2. George Gamow: Biografia fizyki. Barbara Wojtowicz-Natanson (tłum). Warszawa: Wiedza Powszechna, 1967, s. 272–276. OCLC 878933859.

Bibliografia

  • JerzyJ. Dryzek JerzyJ., Wstęp do spektroskopii anihilacji pozytonów w ciele stałym, Kraków: Wydaw. Uniwersytetu Jagiellońskiego, 1997, ISBN 83-233-1064-5, OCLC 749327725 .
  • p
  • d
  • e
Fermiony
Kwarki
Leptony
  • e-
  • e+
  • µ-
  • µ+
  • τ-
  • τ+
  • νe
  • νe
  • νµ
  • νµ
  • ντ
  • ντ
Bozony
Cechowania
Skalar
Inne
Hipotetyczne
Superpartnerzy
Gaugina
  • gluino
  • grawitino
Inne
Inne
Złożone
Hadrony
Bariony / Hiperony
  • N
  • Δ
  • Λ
  • Σ
  • Ξ
  • Ω
Mezony / Kwarkonia
Inne
Hipotetyczne
Hadrony egzotyczne
Interpretacja
  • dikwarki
  • skyrmiony
  • pomerony
Elektrony i dziury
Fonony i pokrewne
Separacja spinowo-ładunkowa
Odpowiedniki cz. elementarnych
Inne
  • fazon
  • frakton
  • konfiguron
  • lewiton
  • magnon
  • plazmaron
  • plazmon
  • roton
  • soliton Dawydowa
  • p
  • d
  • e
Urządzenia
Antycząstki
Zastosowania
Instytucje
  • ALPHA Collaboration
  • ATHENA
  • ATRAP
  • CERN
  • RHIC
Znani uczeni

Kontrola autorytatywna (typ cząstki):
  • LCCN: sh85105392
  • GND: 4175441-4
  • NDL: 00574256
  • BNCF: 21303
  • NKC: ph683099
  • J9U: 987007529508805171
Encyklopedia internetowa:
  • Britannica: science/positron
  • SNL: positron
  • Catalana: 0133816
  • DSDE: positron