Bochner integral

In mathematics, the Bochner integral, named for Salomon Bochner, extends the definition of Lebesgue integral to functions that take values in a Banach space, as the limit of integrals of simple functions.

Definition

Let ( X , Σ , μ ) {\displaystyle (X,\Sigma ,\mu )} be a measure space, and B {\displaystyle B} be a Banach space. The Bochner integral of a function f : X B {\displaystyle f:X\to B} is defined in much the same way as the Lebesgue integral. First, define a simple function to be any finite sum of the form

s n ( x ) = i = 1 n χ E i ( x ) b i {\displaystyle s_{n}(x)=\sum _{i=1}^{n}\chi _{E_{i}}(x)b_{i}}
where the E i {\displaystyle E_{i}} are disjoint members of the σ {\displaystyle \sigma } -algebra Σ , {\displaystyle \Sigma ,} the b i {\displaystyle b_{i}} are distinct elements of B , {\displaystyle B,} and χE is the characteristic function of E . {\displaystyle E.} If μ ( E i ) {\displaystyle \mu \left(E_{i}\right)} is finite whenever b i 0 , {\displaystyle b_{i}\neq 0,} then the simple function is integrable, and the integral is then defined by
X [ i = 1 n χ E i ( x ) b i ] d μ = i = 1 n μ ( E i ) b i {\displaystyle \int _{X}\left[\sum _{i=1}^{n}\chi _{E_{i}}(x)b_{i}\right]\,d\mu =\sum _{i=1}^{n}\mu (E_{i})b_{i}}
exactly as it is for the ordinary Lebesgue integral.

A measurable function f : X B {\displaystyle f:X\to B} is Bochner integrable if there exists a sequence of integrable simple functions s n {\displaystyle s_{n}} such that

lim n X f s n B d μ = 0 , {\displaystyle \lim _{n\to \infty }\int _{X}\|f-s_{n}\|_{B}\,d\mu =0,}
where the integral on the left-hand side is an ordinary Lebesgue integral.

In this case, the Bochner integral is defined by

X f d μ = lim n X s n d μ . {\displaystyle \int _{X}f\,d\mu =\lim _{n\to \infty }\int _{X}s_{n}\,d\mu .}

It can be shown that the sequence { X s n d μ } n = 1 {\displaystyle \left\{\int _{X}s_{n}\,d\mu \right\}_{n=1}^{\infty }} is a Cauchy sequence in the Banach space B , {\displaystyle B,} hence the limit on the right exists; furthermore, the limit is independent of the approximating sequence of simple functions { s n } n = 1 . {\displaystyle \{s_{n}\}_{n=1}^{\infty }.} These remarks show that the integral is well-defined (i.e independent of any choices). It can be shown that a function is Bochner integrable if and only if it lies in the Bochner space L 1 . {\displaystyle L^{1}.}

Properties

Elementary properties

Many of the familiar properties of the Lebesgue integral continue to hold for the Bochner integral. Particularly useful is Bochner's criterion for integrability, which states that if ( X , Σ , μ ) {\displaystyle (X,\Sigma ,\mu )} is a measure space, then a Bochner-measurable function f : X B {\displaystyle f\colon X\to B} is Bochner integrable if and only if

X f B d μ < . {\displaystyle \int _{X}\|f\|_{B}\,\mathrm {d} \mu <\infty .}

Here, a function f : X B {\displaystyle f\colon X\to B}  is called Bochner measurable if it is equal μ {\displaystyle \mu } -almost everywhere to a function g {\displaystyle g} taking values in a separable subspace B 0 {\displaystyle B_{0}} of B {\displaystyle B} , and such that the inverse image g 1 ( U ) {\displaystyle g^{-1}(U)} of every open set U {\displaystyle U}  in B {\displaystyle B}  belongs to Σ {\displaystyle \Sigma } . Equivalently, f {\displaystyle f} is the limit μ {\displaystyle \mu } -almost everywhere of a sequence of countably-valued simple functions.

Linear operators

If T : B B {\displaystyle T\colon B\to B'} is a continuous linear operator between Banach spaces B {\displaystyle B} and B {\displaystyle B'} , and f : X B {\displaystyle f\colon X\to B} is Bochner integrable, then it is relatively straightforward to show that T f : X B {\displaystyle Tf\colon X\to B'} is Bochner integrable and integration and the application of T {\displaystyle T} may be interchanged:

E T f d μ = T E f d μ {\displaystyle \int _{E}Tf\,\mathrm {d} \mu =T\int _{E}f\,\mathrm {d} \mu }
for all measurable subsets E Σ {\displaystyle E\in \Sigma } .

A non-trivially stronger form of this result, known as Hille's theorem, also holds for closed operators.[1] If T : B B {\displaystyle T\colon B\to B'} is a closed linear operator between Banach spaces B {\displaystyle B} and B {\displaystyle B'} and both f : X B {\displaystyle f\colon X\to B} and T f : X B {\displaystyle Tf\colon X\to B'} are Bochner integrable, then

E T f d μ = T E f d μ {\displaystyle \int _{E}Tf\,\mathrm {d} \mu =T\int _{E}f\,\mathrm {d} \mu }
for all measurable subsets E Σ {\displaystyle E\in \Sigma } .

Dominated convergence theorem

A version of the dominated convergence theorem also holds for the Bochner integral. Specifically, if f n : X B {\displaystyle f_{n}\colon X\to B} is a sequence of measurable functions on a complete measure space tending almost everywhere to a limit function f {\displaystyle f} , and if

f n ( x ) B g ( x ) {\displaystyle \|f_{n}(x)\|_{B}\leq g(x)}
for almost every x X {\displaystyle x\in X} , and g L 1 ( μ ) {\displaystyle g\in L^{1}(\mu )} , then
E f f n B d μ 0 {\displaystyle \int _{E}\|f-f_{n}\|_{B}\,\mathrm {d} \mu \to 0}
as n {\displaystyle n\to \infty } and
E f n d μ E f d μ {\displaystyle \int _{E}f_{n}\,\mathrm {d} \mu \to \int _{E}f\,\mathrm {d} \mu }
for all E Σ {\displaystyle E\in \Sigma } .

If f {\displaystyle f} is Bochner integrable, then the inequality

E f d μ B E f B d μ {\displaystyle \left\|\int _{E}f\,\mathrm {d} \mu \right\|_{B}\leq \int _{E}\|f\|_{B}\,\mathrm {d} \mu }
holds for all E Σ . {\displaystyle E\in \Sigma .} In particular, the set function
E E f d μ {\displaystyle E\mapsto \int _{E}f\,\mathrm {d} \mu }
defines a countably-additive B {\displaystyle B} -valued vector measure on X {\displaystyle X} which is absolutely continuous with respect to μ {\displaystyle \mu } .

Radon–Nikodym property

An important fact about the Bochner integral is that the Radon–Nikodym theorem fails to hold in general, and instead is a property (the Radon–Nikodym property) defining an important class of nice Banach spaces.

Specifically, if μ {\displaystyle \mu } is a measure on ( X , Σ ) , {\displaystyle (X,\Sigma ),} then B {\displaystyle B} has the Radon–Nikodym property with respect to μ {\displaystyle \mu } if, for every countably-additive vector measure γ {\displaystyle \gamma } on ( X , Σ ) {\displaystyle (X,\Sigma )} with values in B {\displaystyle B} which has bounded variation and is absolutely continuous with respect to μ , {\displaystyle \mu ,} there is a μ {\displaystyle \mu } -integrable function g : X B {\displaystyle g:X\to B} such that

γ ( E ) = E g d μ {\displaystyle \gamma (E)=\int _{E}g\,d\mu }
for every measurable set E Σ . {\displaystyle E\in \Sigma .} [2]

The Banach space B {\displaystyle B} has the Radon–Nikodym property if B {\displaystyle B} has the Radon–Nikodym property with respect to every finite measure.[2] Equivalent formulations include:

  • Bounded discrete-time martingales in B {\displaystyle B} converge a.s.[3]
  • Functions of bounded-variation into B {\displaystyle B} are differentiable a.e.[4]
  • For every bounded D B {\displaystyle D\subseteq B} , there exists f B {\displaystyle f\in B^{*}} and δ R + {\displaystyle \delta \in \mathbb {R} ^{+}} such that
    { x : f ( x ) + δ > sup f ( D ) } D {\displaystyle \{x:f(x)+\delta >\sup {f(D)}\}\subseteq D}
    has arbitrarily small diameter.[3]

It is known that the space 1 {\displaystyle \ell _{1}} has the Radon–Nikodym property, but c 0 {\displaystyle c_{0}} and the spaces L ( Ω ) , {\displaystyle L^{\infty }(\Omega ),} L 1 ( Ω ) , {\displaystyle L^{1}(\Omega ),} for Ω {\displaystyle \Omega } an open bounded subset of R n , {\displaystyle \mathbb {R} ^{n},} and C ( K ) , {\displaystyle C(K),} for K {\displaystyle K} an infinite compact space, do not.[5] Spaces with Radon–Nikodym property include separable dual spaces (this is the Dunford–Pettis theorem)[citation needed] and reflexive spaces, which include, in particular, Hilbert spaces.[2]

See also

References

  1. ^ Diestel, Joseph; Uhl, Jr., John Jerry (1977). Vector Measures. Mathematical Surveys. American Mathematical Society. doi:10.1090/surv/015. (See Theorem II.2.6)
  2. ^ a b c Bárcenas, Diómedes (2003). "The Radon–Nikodym Theorem for Reflexive Banach Spaces" (PDF). Divulgaciones Matemáticas. 11 (1): 55–59 [pp. 55–56].
  3. ^ a b Bourgin 1983, pp. 31, 33. Thm. 2.3.6-7, conditions (1,4,10).
  4. ^ Bourgin 1983, p. 16. "Early workers in this field were concerned with the Banach space property that each X-valued function of bounded variation on [0,1] be differentiable almost surely. It turns out that this property (known as the Gelfand-Fréchet property) is also equivalent to the RNP [Radon-Nikodym Property]."
  5. ^ Bourgin 1983, p. 14.
  • Bochner, Salomon (1933), "Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind" (PDF), Fundamenta Mathematicae, 20: 262–276
  • Bourgin, Richard D. (1983). Geometric Aspects of Convex Sets with the Radon-Nikodým Property. Lecture Notes in Mathematics 993. Berlin: Springer-Verlag. doi:10.1007/BFb0069321. ISBN 3-540-12296-6.
  • Cohn, Donald (2013), Measure Theory, Birkhäuser Advanced Texts Basler Lehrbücher, Springer, doi:10.1007/978-1-4614-6956-8, ISBN 978-1-4614-6955-1
  • Yosida, Kôsaku (1980), Functional Analysis, Classics in Mathematics, vol. 123, Springer, doi:10.1007/978-3-642-61859-8, ISBN 978-3-540-58654-8
  • Diestel, Joseph (1984), Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, vol. 92, Springer, doi:10.1007/978-1-4612-5200-9, ISBN 978-0-387-90859-5
  • Diestel; Uhl (1977), Vector measures, American Mathematical Society, ISBN 978-0-8218-1515-1
  • Hille, Einar; Phillips, Ralph (1957), Functional Analysis and Semi-Groups, American Mathematical Society, ISBN 978-0-8218-1031-6
  • Lang, Serge (1993), Real and Functional Analysis (3rd ed.), Springer, ISBN 978-0387940014
  • Sobolev, V. I. (2001) [1994], "Bochner integral", Encyclopedia of Mathematics, EMS Press
  • van Dulst, D. (2001) [1994], "Vector measures", Encyclopedia of Mathematics, EMS Press
  • v
  • t
  • e
Types of
integralsIntegration
techniquesImproper integralsStochastic integralsMiscellaneous
  • v
  • t
  • e
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
  • Category
  • v
  • t
  • e
Basic concepts
Derivatives
Measurability
Integrals
Results
Related
Functional calculus
Applications