Bromotrifluoromethane

Organic halide used for fire suppression
Bromotrifluoromethane
Names
Preferred IUPAC name
Bromotri(fluoro)methane
Other names
  • Bromotrifluoromethane
  • Trifluorobromomethane
  • Monobromotrifluoromethane
  • Trifluoromethyl bromide
  • Bromofluoroform
  • Carbon monobromide trifluoride
  • Halon 1301
  • BTM
  • Freon 13BI
  • Freon FE 1301
  • R 13B1
  • Halon 1301 BTM
Identifiers
CAS Number
  • 75-63-8 checkY
3D model (JSmol)
  • Interactive image
ChemSpider
  • 6144 checkY
ECHA InfoCard 100.000.807 Edit this at Wikidata
EC Number
  • 200-887-6
PubChem CID
  • 6384
RTECS number
  • PA5425000
UNII
  • 52231LCA7R checkY
UN number 1009
CompTox Dashboard (EPA)
  • DTXSID5026415 Edit this at Wikidata
InChI
  • InChI=1S/CBrF3/c2-1(3,4)5 checkY
    Key: RJCQBQGAPKAMLL-UHFFFAOYSA-N checkY
  • InChI=1/CBrF3/c2-1(3,4)5
    Key: RJCQBQGAPKAMLL-UHFFFAOYAV
  • BrC(F)(F)F
Properties
Chemical formula
CBrF3
Molar mass 148.910 g·mol−1
Appearance Colorless gas
Odor Odorless[1]
Density 1.538 g/cm3 (at −58 °C (−72 °F))
Melting point −167.78 °C (−270.00 °F; 105.37 K)
Boiling point −57.75 °C (−71.95 °F; 215.40 K)
Solubility in water
0.03 g/L (20 °C (68 °F))
log P 1.86
Vapor pressure 1434 kPa (20 °C (68 °F))
Hazards
Flash point Non-flammable
Lethal dose or concentration (LD, LC):
834,000 ppm (rat, 15 min)[2]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1000 ppm (6100 mg/m3)[1]
REL (Recommended)
TWA 1000 ppm (6100 mg/m3)[1]
IDLH (Immediate danger)
40,000 ppm[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Infobox references
Chemical compound

Bromotrifluoromethane, commonly referred to by the code numbers Halon 1301, R13B1, Halon 13B1 or BTM, is an organic halide with the chemical formula CBrF3. It is used for gaseous fire suppression as a far less toxic alternative to bromochloromethane.[3]

Table of physical properties

Property Value
Critical temperature (Tc) 66.9 °C (340.08 K)
Critical pressure (pc) 3.956 MPa (39.56 bar)
Critical density (ρc) 5.13 mol.l−1
Ozone depletion potential (ODP) 10 (CCl3F = 1)
Global warming potential (GWP) 6900 (CO2 = 1)

Synthesis

Bromotrifluoromethane is commercially synthesized in a two-step process from chloroform. Chloroform is fluorinated with hydrogen fluoride.[4]

CHCl3 + 3 HF → CHF3 + 3 HCl

The resulting Fluoroform is then reacted with elemental bromine.

CHF3 + Br2 → CF3Br + HBr

Uses

Warning sign for fire suppression system
Civilian Halon 1301 fire extinguisher, USA, 1980s

Halon 1301 was developed in a joint venture between the U.S. Army and Purdue University in the late 1940's,[5] and became a DuPont product in 1954. It was introduced as an effective gaseous fire suppression fixed systems agent in the 1960s, and was used around valuable materials, such as aircraft, mainframe computers, and telecommunication switching centers, usually in total flooding systems.[6] It was also widely used in the maritime industry to add a third level of protection should the main and emergency fire pumps become inoperable or ineffective. Halon 1301 was never widely used in portables outside marine, military and spacecraft applications, due to its limited range, and invisible discharge. It does not produce the characteristic white cloud like CO2 and is difficult to direct when fighting large fires. Halon 1301 is ideal for armored vehicles and spacecraft, because it produces fewer toxic by-products than does Halon 1211, which is critical for combat or space conditions where a compartment may not be able to be ventilated immediately. Halon 1301 is widely used by the U.S. Military[7] and NASA in a 2-3/4 lb portable extinguisher with a sealed, disposable cylinder for quick recharging. Other agents such as CO2 and FE-36 (HFC-236fa) wet chemical are largely replacing halon 1301 for environmental concerns. Civilian models in 2-3/4, 3, and 4 lb sizes were also made.

It is considered good practice to avoid all unnecessary exposure to Halon 1301, and to limit exposures to concentrations of 7% and below to 15 minutes. Exposure to Halon 1301 in the 5% to 7% range produces little, if any, noticeable effect. At levels between 7% and 10%, mild central nervous system effects such as dizziness and tingling in the extremities have been reported.[8] In practice, the operators of many Halon 1301 total flooding systems evacuate the space on impending agent discharge.

Halon systems are among the most effective and commonly used fire protection systems used on commercial aircraft. Halon 1301 is the primary agent used in commercial aviation engine, cargo compartments, and auxiliary power unit fire zones.[9][10] Efforts to find a suitable replacement for Halon 1301 have not produced a widely accepted replacement.[11][12]

Bromotrifluoromethane was also used as a filling of the bubble chamber in the neutrino detector Gargamelle.

Before the dangers of Halon 1301 as an ozone depleter were known, many industrial chillers used it as an efficient refrigerant gas.[13]

H-1301 measured by the Advanced Global Atmospheric Gases Experiment (AGAGE) in the lower atmosphere (troposphere) at stations around the world. Abundances are given as pollution free monthly mean mole fractions in parts-per-trillion.

Chemical reagent

It is a precursor to trifluoromethyltrimethylsilane, a popular trifluoromethylating reagent in organic synthesis.[14]

Alternatives

Halon 1301 hazard sign, with instructions upon gas discharge.

Alternatives for normally occupied areas include (PFC-410 or CEA-410), C3F8 (PFC-218 or CEA-308), HCFC Blend A (NAF S-III), HFC-23 (FE 13), HFC-227ea (FM 200), IG-01 (argon), IG-55 (argonite), HFC-125, or HFC-134a. For normally unoccupied areas, the alternatives include carbon dioxide, powdered Aerosol C, CF3I, HCFC-22, HCFC-124, HFC-125, HFC-134a, gelled halocarbon/dry chemical suspension (PGA), blend of inert gas, high expansion foam systems and powdered aerosol (FS 0140), and IG-541 (Inergen).[15] Perfluorocarbons, i.e., PFCs such as C3F8, have very long atmospheric lifetimes and very high global warming potentials. Hydrochlorofluorocarbons, i.e., HCFCs including HCFC containing NAF S-III, contain chlorine and are stratospheric ozone layer depleters, although less so than Halon 1301. Their selection for usage as Halon replacements should consider those factors, and is restricted in some countries.

See also

References

  1. ^ a b c d NIOSH Pocket Guide to Chemical Hazards. "#0634". National Institute for Occupational Safety and Health (NIOSH).
  2. ^ "Trifluorobromomethane". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. ^ Dagani, M. J.; Barda, H. J.; Benya, T. J.; Sanders, D. C. "Bromine Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_405. ISBN 978-3527306732.
  4. ^ Brice, T. J.; Pearlson, W. H.; Simons, J. H. (June 1946). "Fluorocarbon Bromides". Journal of the American Chemical Society. 68 (6): 968–969. doi:10.1021/ja01210a017. ISSN 0002-7863.
  5. ^ "Final Report on Fire Extinguishing Agents for the Period September 1, 1947, to June 30, 1950", Contract No. W44-099eng-507, Purdue Research Foundation, Lafayette, Indiana, July 1950.
  6. ^ NFPA 12A Standard on Halon 1301 Fire Extinguishing Systems https://www.nfpa.org/codes-and-standards/1/2/a/12a?l=125
  7. ^ Hodges and McCormick, "Fire Extinguishing Agents for Protection of Occupied Spaces in Military Ground Vehicles," 2010, DTIC ADA517470 https://apps.dtic.mil/sti/citations/ADA517470
  8. ^ NFPA 12A Standard on Halon 1301 Fire Extinguishing Systems, 2004 Edition / Annex D, Hazards to Personnel, section D.2.2
  9. ^ United States Environmental Protection Agency | Guidance for the EPA Halon(R) Emission Reduction Rule | Federal Aviation Administration
  10. ^ Boeing Commercial Aeromagazine | Quarter 04, 2011 | Replacing Halon in Fire Protection Systems: a Progress report
  11. ^ Aerospace Manufacturing and Design | Halon Alternatives for Aircraft Propulsion Systems consortium formed | January 27, 2015
  12. ^ FAA | Task Group on Halon Options
  13. ^ "National Refrigerants MSDS" (PDF). Archived from the original (PDF) on 2011-02-08. Retrieved 2009-07-17.
  14. ^ Ramaiah, Pichika; Krishnamurti, Ramesh; Prakash, G. K. Surya (1995). "1-Trifluoromethyl-1-cyclhexanol". Org. Synth. 72: 232. doi:10.15227/orgsyn.072.0232.
  15. ^ Halon 1301 Replacements Archived 2008-04-19 at the Wayback Machine

External links

  • International Chemical Safety Card 0837
  • NIOSH Pocket Guide to Chemical Hazards. "#0634". National Institute for Occupational Safety and Health (NIOSH).
  • "Final Report on Fire Extinguishing Agents for the Period September 1, 1947, to June 30, 1950", Contract No. W44-099eng-507, Purdue Research Foundation, Lafayette, Indiana, July 1950.
  • MSDS sheet at airliquide.com[permanent dead link]
  • FAA paper on testing cylinders used to store Halon 1301 without breaking their seals (pdf)
  • MSDS for bromotrifluoromethane (pdf)
  • Basic Facts about Halon Archived 2012-01-04 at the Wayback Machine
  • v
  • t
  • e
Unsubstituted
  • CH4
Monosubstituted
  • CH3F
  • CH3Cl
  • CH3Br
  • CH3I
  • CH3At
Disubstituted
  • CH2F2
  • CH2ClF
  • CH2BrF
  • CH2FI
  • CH2Cl2
  • CH2BrCl
  • CH2ClI
  • CH2Br2
  • CH2BrI
  • CH2I2
Trisubstituted
  • CHF3
  • CHClF2
  • CHBrF2
  • CHF2I
  • CHCl2F
  • C*HBrClF
  • C*HClFI
  • CHBr2F
  • C*HBrFI
  • CHFI2
  • CHCl3
  • CHBrCl2
  • CHCl2I
  • CHBr2Cl
  • C*HBrClI
  • CHClI2
  • CHBr3
  • CHBr2I
  • CHBrI2
  • CHI3
Tetrasubstituted
  • CF4
  • CClF3
  • CBrF3
  • CF3I
  • CCl2F2
  • CBrClF2
  • CClF2I
  • CBr2F2
  • CBrF2I
  • CF2I2
  • CCl3F
  • CBrCl2F
  • CCl2FI
  • CBr2ClF
  • C*BrClFI
  • CClFI2
  • CBr3F
  • CBr2FI
  • CBrFI2
  • CFI3
  • CCl4
  • CBrCl3
  • CCl3I
  • CBr2Cl2
  • CBrCl2I
  • CCl2I2
  • CBr3Cl
  • CBr2ClI
  • CBrClI2
  • CClI3
  • CBr4
  • CBr3I
  • CBr2I2
  • CBrI3
  • CI4
* Chiral compound.
  • v
  • t
  • e
HF He
LiF BeF2 BF
BF3
B2F4
CF4
CxFy
NF3
N2F4
OF
OF2
O2F2
O2F
F Ne
NaF MgF2 AlF
AlF3
SiF4 P2F4
PF3
PF5
S2F2
SF2
S2F4
SF4
S2F10
SF6
ClF
ClF3
ClF5
HArF
ArF2
KF CaF2 ScF3 TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
CrF6
MnF2
MnF3
MnF4
FeF2
FeF3
CoF2
CoF3
NiF2
NiF3
CuF
CuF2
ZnF2 GaF3 GeF4 AsF3
AsF5
SeF4
SeF6
BrF
BrF3
BrF5
KrF2
KrF4
KrF6
RbF SrF2 YF3 ZrF4 NbF4
NbF5
MoF4
MoF5
MoF6
TcF6 RuF3
RuF4
RuF5
RuF6
RhF3
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
PdF6
AgF
AgF2
AgF3
Ag2F
CdF2 InF3 SnF2
SnF4
SbF3
SbF5
TeF4
TeF6
IF
IF3
IF5
IF7
XeF2
XeF4
XeF6
XeF8
CsF BaF2 * LuF3 HfF4 TaF5 WF4
WF6
ReF6
ReF7
OsF4
OsF5
OsF6
OsF
7

OsF8
IrF3
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
AuF5·F2
HgF2
Hg2F2
HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
PoF4
PoF6
At RnF2
RnF6
Fr RaF2 ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
* LaF3 CeF3
CeF4
PrF3
PrF4
NdF3 PmF3 SmF2
SmF3
EuF2
EuF3
GdF3 TbF3
TbF4
DyF3 HoF3 ErF3 TmF2
TmF3
YbF2
YbF3
** AcF3 ThF4 PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF3
AmF4
AmF6
CmF3 Bk Cf Es Fm Md No
PF6, AsF6, SbF6 compounds
  • AgPF6
  • KAsF6
  • LiAsF6
  • NaAsF6
  • HPF6
  • HSbF6
  • NH4PF6
  • KPF6
  • KSbF6
  • LiPF6
  • NaPF6
  • NaSbF6
  • TlPF6
AlF6 compounds
  • Cs2AlF5
  • K3AlF6
  • Na3AlF6
chlorides, bromides, iodides
and pseudohalogenides
SiF62-, GeF62- compounds
  • BaSiF6
  • BaGeF6
  • (NH4)2SiF6
  • Na2[SiF6]
  • K2[SiF6]
Oxyfluorides
  • BrOF3
  • BrO2F
  • BrO3F
  • LaOF
  • ThOF2
  • VOF
    3
  • TcO
    3
    F
  • WOF
    4
  • YOF
  • ClOF3
  • ClO2F3
Organofluorides
  • CBrF3
  • CBr2F2
  • CBr3F
  • CClF3
  • CCl2F2
  • CCl3F
  • CF2O
  • CF3I
  • CHF3
  • CH2F2
  • CH3F
  • C2Cl3F3
  • C2H3F
  • C6H5F
  • C7H5F3
  • C15F33N
  • C3H5F
  • C6H11F
with transition metal,
lanthanide, actinide, ammonium
  • VOF3
  • CrOF4
  • CrF2O2
  • NH4F
  • (NH4)2ZrF6
  • CsXeF7
  • Li2TiF6
  • Li2ZrF6
  • K2TiF6
  • Rb2TiF6
  • Na2TiF6
  • Na2ZrF6
  • K2NbF7
  • K2TaF7
  • K2ZrF6
  • UO2F2
nitric acids
bifluorides
  • KHF2
  • NaHF2
  • NH4HF2
thionyl, phosphoryl,
and iodosyl
  • F2OS
  • F3OP
  • PSF3
  • IOF3
  • IO3F
  • IOF5
  • IO2F
  • IO2F3