Fractional ideal

Algebraic structure → Ring theory
Ring theory
Basic concepts
Rings
• Subrings
• Ideal
• Quotient ring
• Fractional ideal
Total ring of fractions
• Product of rings
• Free product of associative algebras
Tensor product of algebras

Ring homomorphisms

• Kernel
Inner automorphism
• Frobenius endomorphism

Algebraic structures

• Module
• Associative algebra
• Graded ring
• Involutive ring
• Category of rings
• Initial ring Z {\displaystyle \mathbb {Z} }
• Terminal ring 0 = Z / 1 Z {\displaystyle 0=\mathbb {Z} /1\mathbb {Z} }

Related structures

• Field
• Finite field
• Non-associative ring
Lie ring
Jordan ring
Semiring
Semifield
Commutative rings
Integral domain
Integrally closed domain
GCD domain
Unique factorization domain
Principal ideal domain
Euclidean domain
• Field
Finite field
Composition ring
Polynomial ring
Formal power series ring

Algebraic number theory

Algebraic number field
Ring of integers
Algebraic independence
Transcendental number theory
Transcendence degree

p-adic number theory and decimals

Direct limit/Inverse limit
Zero ring Z / 1 Z {\displaystyle \mathbb {Z} /1\mathbb {Z} }
• Integers modulo pn Z / p n Z {\displaystyle \mathbb {Z} /p^{n}\mathbb {Z} }
• Prüfer p-ring Z ( p ) {\displaystyle \mathbb {Z} (p^{\infty })}
Base-p circle ring T {\displaystyle \mathbb {T} }
Base-p integers Z {\displaystyle \mathbb {Z} }
p-adic rationals Z [ 1 / p ] {\displaystyle \mathbb {Z} [1/p]}
Base-p real numbers R {\displaystyle \mathbb {R} }
p-adic integers Z p {\displaystyle \mathbb {Z} _{p}}
p-adic numbers Q p {\displaystyle \mathbb {Q} _{p}}
p-adic solenoid T p {\displaystyle \mathbb {T} _{p}}

Algebraic geometry

Affine variety
  • v
  • t
  • e

In mathematics, in particular commutative algebra, the concept of fractional ideal is introduced in the context of integral domains and is particularly fruitful in the study of Dedekind domains. In some sense, fractional ideals of an integral domain are like ideals where denominators are allowed. In contexts where fractional ideals and ordinary ring ideals are both under discussion, the latter are sometimes termed integral ideals for clarity.

Definition and basic results

Let R {\displaystyle R} be an integral domain, and let K = Frac R {\displaystyle K=\operatorname {Frac} R} be its field of fractions.

A fractional ideal of R {\displaystyle R} is an R {\displaystyle R} -submodule I {\displaystyle I} of K {\displaystyle K} such that there exists a non-zero r R {\displaystyle r\in R} such that r I R {\displaystyle rI\subseteq R} . The element r {\displaystyle r} can be thought of as clearing out the denominators in I {\displaystyle I} , hence the name fractional ideal.

The principal fractional ideals are those R {\displaystyle R} -submodules of K {\displaystyle K} generated by a single nonzero element of K {\displaystyle K} . A fractional ideal I {\displaystyle I} is contained in R {\displaystyle R} if and only if it is an (integral) ideal of R {\displaystyle R} .

A fractional ideal I {\displaystyle I} is called invertible if there is another fractional ideal J {\displaystyle J} such that

I J = R {\displaystyle IJ=R}

where

I J = { a 1 b 1 + a 2 b 2 + + a n b n : a i I , b j J , n Z > 0 } {\displaystyle IJ=\{a_{1}b_{1}+a_{2}b_{2}+\cdots +a_{n}b_{n}:a_{i}\in I,b_{j}\in J,n\in \mathbb {Z} _{>0}\}}

is the product of the two fractional ideals.

In this case, the fractional ideal J {\displaystyle J} is uniquely determined and equal to the generalized ideal quotient

( R : K I ) = { x K : x I R } . {\displaystyle (R:_{K}I)=\{x\in K:xI\subseteq R\}.}

The set of invertible fractional ideals form an abelian group with respect to the above product, where the identity is the unit ideal ( 1 ) = R {\displaystyle (1)=R} itself. This group is called the group of fractional ideals of R {\displaystyle R} . The principal fractional ideals form a subgroup. A (nonzero) fractional ideal is invertible if and only if it is projective as an R {\displaystyle R} -module. Geometrically, this means an invertible fractional ideal can be interpreted as rank 1 vector bundle over the affine scheme Spec ( R ) {\displaystyle {\text{Spec}}(R)} .

Every finitely generated R-submodule of K is a fractional ideal and if R {\displaystyle R} is noetherian these are all the fractional ideals of R {\displaystyle R} .

Dedekind domains

In Dedekind domains, the situation is much simpler. In particular, every non-zero fractional ideal is invertible. In fact, this property characterizes Dedekind domains:

An integral domain is a Dedekind domain if and only if every non-zero fractional ideal is invertible.

The set of fractional ideals over a Dedekind domain R {\displaystyle R} is denoted Div ( R ) {\displaystyle {\text{Div}}(R)} .

Its quotient group of fractional ideals by the subgroup of principal fractional ideals is an important invariant of a Dedekind domain called the ideal class group.

Number fields

For the special case of number fields K {\displaystyle K} (such as Q ( ζ n ) {\displaystyle \mathbb {Q} (\zeta _{n})} ) there is an associated ring denoted O K {\displaystyle {\mathcal {O}}_{K}} called the ring of integers of K {\displaystyle K} . For example, O Q ( d ) = Z [ d ] {\displaystyle {\mathcal {O}}_{\mathbb {Q} ({\sqrt {d}}\,)}=\mathbb {Z} [{\sqrt {d}}\,]} for d {\displaystyle d} square-free and congruent to 2 , 3   ( mod  4 ) {\displaystyle 2,3{\text{ }}({\text{mod }}4)} . The key property of these rings O K {\displaystyle {\mathcal {O}}_{K}} is they are Dedekind domains. Hence the theory of fractional ideals can be described for the rings of integers of number fields. In fact, class field theory is the study of such groups of class rings.

Associated structures

For the ring of integers[1]pg 2 O K {\displaystyle {\mathcal {O}}_{K}} of a number field, the group of fractional ideals forms a group denoted I K {\displaystyle {\mathcal {I}}_{K}} and the subgroup of principal fractional ideals is denoted P K {\displaystyle {\mathcal {P}}_{K}} . The ideal class group is the group of fractional ideals modulo the principal fractional ideals, so

C K := I K / P K {\displaystyle {\mathcal {C}}_{K}:={\mathcal {I}}_{K}/{\mathcal {P}}_{K}}

and its class number h K {\displaystyle h_{K}} is the order of the group, h K = | C K | {\displaystyle h_{K}=|{\mathcal {C}}_{K}|} . In some ways, the class number is a measure for how "far" the ring of integers O K {\displaystyle {\mathcal {O}}_{K}} is from being a unique factorization domain (UFD). This is because h K = 1 {\displaystyle h_{K}=1} if and only if O K {\displaystyle {\mathcal {O}}_{K}} is a UFD.

Exact sequence for ideal class groups

There is an exact sequence

0 O K K I K C K 0 {\displaystyle 0\to {\mathcal {O}}_{K}^{*}\to K^{*}\to {\mathcal {I}}_{K}\to {\mathcal {C}}_{K}\to 0}

associated to every number field.

Structure theorem for fractional ideals

One of the important structure theorems for fractional ideals of a number field states that every fractional ideal I {\displaystyle I} decomposes uniquely up to ordering as

I = ( p 1 p n ) ( q 1 q m ) 1 {\displaystyle I=({\mathfrak {p}}_{1}\ldots {\mathfrak {p}}_{n})({\mathfrak {q}}_{1}\ldots {\mathfrak {q}}_{m})^{-1}}

for prime ideals

p i , q j Spec ( O K ) {\displaystyle {\mathfrak {p}}_{i},{\mathfrak {q}}_{j}\in {\text{Spec}}({\mathcal {O}}_{K})} .

in the spectrum of O K {\displaystyle {\mathcal {O}}_{K}} . For example,

2 5 O Q ( i ) {\displaystyle {\frac {2}{5}}{\mathcal {O}}_{\mathbb {Q} (i)}} factors as ( 1 + i ) ( 1 i ) ( ( 1 + 2 i ) ( 1 2 i ) ) 1 {\displaystyle (1+i)(1-i)((1+2i)(1-2i))^{-1}}

Also, because fractional ideals over a number field are all finitely generated we can clear denominators by multiplying by some α {\displaystyle \alpha } to get an ideal J {\displaystyle J} . Hence

I = 1 α J {\displaystyle I={\frac {1}{\alpha }}J}

Another useful structure theorem is that integral fractional ideals are generated by up to 2 elements. We call a fractional ideal which is a subset of O K {\displaystyle {\mathcal {O}}_{K}} integral.

Examples

  • 5 4 Z {\displaystyle {\frac {5}{4}}\mathbb {Z} } is a fractional ideal over Z {\displaystyle \mathbb {Z} }
  • For K = Q ( i ) {\displaystyle K=\mathbb {Q} (i)} the ideal ( 5 ) {\displaystyle (5)} splits in O Q ( i ) = Z [ i ] {\displaystyle {\mathcal {O}}_{\mathbb {Q} (i)}=\mathbb {Z} [i]} as ( 2 i ) ( 2 + i ) {\displaystyle (2-i)(2+i)}
  • In Q ζ 3 {\displaystyle \mathbb {Q} _{\zeta _{3}}} we have the factorization ( 3 ) = ( 2 ζ 3 + 1 ) 2 {\displaystyle (3)=(2\zeta _{3}+1)^{2}} . This is because if we multiply it out, we get
    ( 2 ζ 3 + 1 ) 2 = 4 ζ 3 2 + 4 ζ 3 + 1 = 4 ( ζ 3 2 + ζ 3 ) + 1 {\displaystyle {\begin{aligned}(2\zeta _{3}+1)^{2}&=4\zeta _{3}^{2}+4\zeta _{3}+1\\&=4(\zeta _{3}^{2}+\zeta _{3})+1\end{aligned}}}
Since ζ 3 {\displaystyle \zeta _{3}} satisfies ζ 3 2 + ζ 3 = 1 {\displaystyle \zeta _{3}^{2}+\zeta _{3}=-1} , our factorization makes sense.
  • In Q ( 23 ) {\displaystyle \mathbb {Q} ({\sqrt {-23}})} we can multiply the fractional ideals
I = ( 2 , ( 1 / 2 ) 23 ( 1 / 2 ) ) {\displaystyle I=(2,(1/2){\sqrt {-23}}-(1/2))} and J = ( 4 , ( 1 / 2 ) 23 + ( 3 / 2 ) ) {\displaystyle J=(4,(1/2){\sqrt {-23}}+(3/2))}
to get the ideal
I J = ( ( 1 / 2 ) 23 ( 3 / 2 ) ) . {\displaystyle IJ=(-(1/2){\sqrt {-23}}-(3/2)).}

Divisorial ideal

Let I ~ {\displaystyle {\tilde {I}}} denote the intersection of all principal fractional ideals containing a nonzero fractional ideal I {\displaystyle I} .

Equivalently,

I ~ = ( R : ( R : I ) ) , {\displaystyle {\tilde {I}}=(R:(R:I)),}

where as above

( R : I ) = { x K : x I R } . {\displaystyle (R:I)=\{x\in K:xI\subseteq R\}.}

If I ~ = I {\displaystyle {\tilde {I}}=I} then I is called divisorial.[2] In other words, a divisorial ideal is a nonzero intersection of some nonempty set of fractional principal ideals.

If I is divisorial and J is a nonzero fractional ideal, then (I : J) is divisorial.

Let R be a local Krull domain (e.g., a Noetherian integrally closed local domain). Then R is a discrete valuation ring if and only if the maximal ideal of R is divisorial.[3]

An integral domain that satisfies the ascending chain conditions on divisorial ideals is called a Mori domain.[4]

See also

Notes

  1. ^ Childress, Nancy (2009). Class field theory. New York: Springer. ISBN 978-0-387-72490-4. OCLC 310352143.
  2. ^ Bourbaki 1998, §VII.1
  3. ^ Bourbaki 1998, Ch. VII, § 1, n. 7. Proposition 11.
  4. ^ Barucci 2000.

References

  • Barucci, Valentina (2000), "Mori domains", in Glaz, Sarah; Chapman, Scott T. (eds.), Non-Noetherian commutative ring theory, Mathematics and its Applications, vol. 520, Dordrecht: Kluwer Acad. Publ., pp. 57–73, ISBN 978-0-7923-6492-4, MR 1858157
  • Stein, William, A Computational Introduction to Algebraic Number Theory (PDF)
  • Chapter 9 of Atiyah, Michael Francis; Macdonald, I.G. (1994), Introduction to Commutative Algebra, Westview Press, ISBN 978-0-201-40751-8
  • Chapter VII.1 of Bourbaki, Nicolas (1998), Commutative algebra (2nd ed.), Springer Verlag, ISBN 3-540-64239-0
  • Chapter 11 of Matsumura, Hideyuki (1989), Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8 (2nd ed.), Cambridge University Press, ISBN 978-0-521-36764-6, MR 1011461