Hilbert C*-module

Mathematical objects that generalise the notion of Hilbert spaces

Hilbert C*-modules are mathematical objects that generalise the notion of Hilbert spaces (which are themselves generalisations of Euclidean space), in that they endow a linear space with an "inner product" that takes values in a C*-algebra. Hilbert C*-modules were first introduced in the work of Irving Kaplansky in 1953, which developed the theory for commutative, unital algebras (though Kaplansky observed that the assumption of a unit element was not "vital").[1] In the 1970s the theory was extended to non-commutative C*-algebras independently by William Lindall Paschke[2] and Marc Rieffel, the latter in a paper that used Hilbert C*-modules to construct a theory of induced representations of C*-algebras.[3] Hilbert C*-modules are crucial to Kasparov's formulation of KK-theory,[4] and provide the right framework to extend the notion of Morita equivalence to C*-algebras.[5] They can be viewed as the generalization of vector bundles to noncommutative C*-algebras and as such play an important role in noncommutative geometry, notably in C*-algebraic quantum group theory,[6][7] and groupoid C*-algebras.

Definitions

Inner-product C*-modules

Let A {\displaystyle A} be a C*-algebra (not assumed to be commutative or unital), its involution denoted by {\displaystyle {}^{*}} . An inner-product A {\displaystyle A} -module (or pre-Hilbert A {\displaystyle A} -module) is a complex linear space E {\displaystyle E} equipped with a compatible right A {\displaystyle A} -module structure, together with a map

, A : E × E A {\displaystyle \langle \,\cdot \,,\,\cdot \,\rangle _{A}:E\times E\rightarrow A}

that satisfies the following properties:

  • For all x {\displaystyle x} , y {\displaystyle y} , z {\displaystyle z} in E {\displaystyle E} , and α {\displaystyle \alpha } , β {\displaystyle \beta } in C {\displaystyle \mathbb {C} } :
x , y α + z β A = x , y A α + x , z A β {\displaystyle \langle x,y\alpha +z\beta \rangle _{A}=\langle x,y\rangle _{A}\alpha +\langle x,z\rangle _{A}\beta }
(i.e. the inner product is C {\displaystyle \mathbb {C} } -linear in its second argument).
  • For all x {\displaystyle x} , y {\displaystyle y} in E {\displaystyle E} , and a {\displaystyle a} in A {\displaystyle A} :
x , y a A = x , y A a {\displaystyle \langle x,ya\rangle _{A}=\langle x,y\rangle _{A}a}
  • For all x {\displaystyle x} , y {\displaystyle y} in E {\displaystyle E} :
x , y A = y , x A , {\displaystyle \langle x,y\rangle _{A}=\langle y,x\rangle _{A}^{*},}
from which it follows that the inner product is conjugate linear in its first argument (i.e. it is a sesquilinear form).
  • For all x {\displaystyle x} in E {\displaystyle E} :
x , x A 0 {\displaystyle \langle x,x\rangle _{A}\geq 0}
in the sense of being a positive element of A, and
x , x A = 0 x = 0. {\displaystyle \langle x,x\rangle _{A}=0\iff x=0.}
(An element of a C*-algebra A {\displaystyle A} is said to be positive if it is self-adjoint with non-negative spectrum.)[8][9]

Hilbert C*-modules

An analogue to the Cauchy–Schwarz inequality holds for an inner-product A {\displaystyle A} -module E {\displaystyle E} :[10]

x , y A y , x A y , y A x , x A {\displaystyle \langle x,y\rangle _{A}\langle y,x\rangle _{A}\leq \Vert \langle y,y\rangle _{A}\Vert \langle x,x\rangle _{A}}

for x {\displaystyle x} , y {\displaystyle y} in E {\displaystyle E} .

On the pre-Hilbert module E {\displaystyle E} , define a norm by

x = x , x A 1 2 . {\displaystyle \Vert x\Vert =\Vert \langle x,x\rangle _{A}\Vert ^{\frac {1}{2}}.}

The norm-completion of E {\displaystyle E} , still denoted by E {\displaystyle E} , is said to be a Hilbert A {\displaystyle A} -module or a Hilbert C*-module over the C*-algebra A {\displaystyle A} . The Cauchy–Schwarz inequality implies the inner product is jointly continuous in norm and can therefore be extended to the completion.

The action of A {\displaystyle A} on E {\displaystyle E} is continuous: for all x {\displaystyle x} in E {\displaystyle E}

a λ a x a λ x a . {\displaystyle a_{\lambda }\rightarrow a\Rightarrow xa_{\lambda }\rightarrow xa.}

Similarly, if ( e λ ) {\displaystyle (e_{\lambda })} is an approximate unit for A {\displaystyle A} (a net of self-adjoint elements of A {\displaystyle A} for which a e λ {\displaystyle ae_{\lambda }} and e λ a {\displaystyle e_{\lambda }a} tend to a {\displaystyle a} for each a {\displaystyle a} in A {\displaystyle A} ), then for x {\displaystyle x} in E {\displaystyle E}

x e λ x . {\displaystyle xe_{\lambda }\rightarrow x.}

Whence it follows that E A {\displaystyle EA} is dense in E {\displaystyle E} , and x 1 A = x {\displaystyle x1_{A}=x} when A {\displaystyle A} is unital.

Let

E , E A = span { x , y A x , y E } , {\displaystyle \langle E,E\rangle _{A}=\operatorname {span} \{\langle x,y\rangle _{A}\mid x,y\in E\},}

then the closure of E , E A {\displaystyle \langle E,E\rangle _{A}} is a two-sided ideal in A {\displaystyle A} . Two-sided ideals are C*-subalgebras and therefore possess approximate units. One can verify that E E , E A {\displaystyle E\langle E,E\rangle _{A}} is dense in E {\displaystyle E} . In the case when E , E A {\displaystyle \langle E,E\rangle _{A}} is dense in A {\displaystyle A} , E {\displaystyle E} is said to be full. This does not generally hold.

Examples

Hilbert spaces

Since the complex numbers C {\displaystyle \mathbb {C} } are a C*-algebra with an involution given by complex conjugation, a complex Hilbert space H {\displaystyle {\mathcal {H}}} is a Hilbert C {\displaystyle \mathbb {C} } -module under scalar multipliation by complex numbers and its inner product.

Vector bundles

If X {\displaystyle X} is a locally compact Hausdorff space and E {\displaystyle E} a vector bundle over X {\displaystyle X} with projection π : E X {\displaystyle \pi \colon E\to X} a Hermitian metric g {\displaystyle g} , then the space of continuous sections of E {\displaystyle E} is a Hilbert C ( X ) {\displaystyle C(X)} -module. Given sections σ , ρ {\displaystyle \sigma ,\rho } of E {\displaystyle E} and f C ( X ) {\displaystyle f\in C(X)} the right action is defined by

σ f ( x ) = σ ( x ) f ( π ( x ) ) , {\displaystyle \sigma f(x)=\sigma (x)f(\pi (x)),}

and the inner product is given by

σ , ρ C ( X ) ( x ) := g ( σ ( x ) , ρ ( x ) ) . {\displaystyle \langle \sigma ,\rho \rangle _{C(X)}(x):=g(\sigma (x),\rho (x)).}

The converse holds as well: Every countably generated Hilbert C*-module over a commutative unital C*-algebra A = C ( X ) {\displaystyle A=C(X)} is isomorphic to the space of sections vanishing at infinity of a continuous field of Hilbert spaces over X {\displaystyle X} . [citation needed]

C*-algebras

Any C*-algebra A {\displaystyle A} is a Hilbert A {\displaystyle A} -module with the action given by right multiplication in A {\displaystyle A} and the inner product a , b = a b {\displaystyle \langle a,b\rangle =a^{*}b} . By the C*-identity, the Hilbert module norm coincides with C*-norm on A {\displaystyle A} .

The (algebraic) direct sum of n {\displaystyle n} copies of A {\displaystyle A}

A n = i = 1 n A {\displaystyle A^{n}=\bigoplus _{i=1}^{n}A}

can be made into a Hilbert A {\displaystyle A} -module by defining

( a i ) , ( b i ) A = i = 1 n a i b i . {\displaystyle \langle (a_{i}),(b_{i})\rangle _{A}=\sum _{i=1}^{n}a_{i}^{*}b_{i}.}

If p {\displaystyle p} is a projection in the C*-algebra M n ( A ) {\displaystyle M_{n}(A)} , then p A n {\displaystyle pA^{n}} is also a Hilbert A {\displaystyle A} -module with the same inner product as the direct sum.

The standard Hilbert module

One may also consider the following subspace of elements in the countable direct product of A {\displaystyle A}

2 ( A ) = H A = { ( a i ) | i = 1 a i a i  converges in  A } . {\displaystyle \ell _{2}(A)={\mathcal {H}}_{A}={\Big \{}(a_{i})|\sum _{i=1}^{\infty }a_{i}^{*}a_{i}{\text{ converges in }}A{\Big \}}.}

Endowed with the obvious inner product (analogous to that of A n {\displaystyle A^{n}} ), the resulting Hilbert A {\displaystyle A} -module is called the standard Hilbert module over A {\displaystyle A} .

The standard Hilbert module plays an important role in the proof of the Kasparov stabilization theorem which states that for any countably generated Hilbert A {\displaystyle A} -module E {\displaystyle E} there is an isometric isomorphism E 2 ( A ) 2 ( A ) . {\displaystyle E\oplus \ell ^{2}(A)\cong \ell ^{2}(A).} [11]

See also

Notes

  1. ^ Kaplansky, I. (1953). "Modules over operator algebras". American Journal of Mathematics. 75 (4): 839–853. doi:10.2307/2372552. JSTOR 2372552.
  2. ^ Paschke, W. L. (1973). "Inner product modules over B*-algebras". Transactions of the American Mathematical Society. 182: 443–468. doi:10.2307/1996542. JSTOR 1996542.
  3. ^ Rieffel, M. A. (1974). "Induced representations of C*-algebras". Advances in Mathematics. 13 (2): 176–257. doi:10.1016/0001-8708(74)90068-1.
  4. ^ Kasparov, G. G. (1980). "Hilbert C*-modules: Theorems of Stinespring and Voiculescu". Journal of Operator Theory. 4. Theta Foundation: 133–150.
  5. ^ Rieffel, M. A. (1982). "Morita equivalence for operator algebras". Proceedings of Symposia in Pure Mathematics. 38. American Mathematical Society: 176–257.
  6. ^ Baaj, S.; Skandalis, G. (1993). "Unitaires multiplicatifs et dualité pour les produits croisés de C*-algèbres". Annales Scientifiques de l'École Normale Supérieure. 26 (4): 425–488. doi:10.24033/asens.1677.
  7. ^ Woronowicz, S. L. (1991). "Unbounded elements affiliated with C*-algebras and non-compact quantum groups". Communications in Mathematical Physics. 136 (2): 399–432. Bibcode:1991CMaPh.136..399W. doi:10.1007/BF02100032. S2CID 118184597.
  8. ^ Arveson, William (1976). An Invitation to C*-Algebras. Springer-Verlag. p. 35.
  9. ^ In the case when A {\displaystyle A} is non-unital, the spectrum of an element is calculated in the C*-algebra generated by adjoining a unit to A {\displaystyle A} .
  10. ^ This result in fact holds for semi-inner-product A {\displaystyle A} -modules, which may have non-zero elements A {\displaystyle A} such that x , x A = 0 {\displaystyle \langle x,x\rangle _{A}=0} , as the proof does not rely on the nondegeneracy property.
  11. ^ Kasparov, G. G. (1980). "Hilbert C*-modules: Theorems of Stinespring and Voiculescu". Journal of Operator Theory. 4. ThetaFoundation: 133–150.

References

  • Lance, E. Christopher (1995). Hilbert C*-modules: A toolkit for operator algebraists. London Mathematical Society Lecture Note Series. Cambridge, England: Cambridge University Press.

External links