Self-adjoint

Element of algebra where x* equals x

In mathematics, an element of a *-algebra is called self-adjoint if it is the same as its adjoint (i.e. a = a {\displaystyle a=a^{*}} ).

Definition

Let A {\displaystyle {\mathcal {A}}} be a *-algebra. An element a A {\displaystyle a\in {\mathcal {A}}} is called self-adjoint if a = a {\displaystyle a=a^{*}} .[1]

The set of self-adjoint elements is referred to as A s a {\displaystyle {\mathcal {A}}_{sa}} .

A subset B A {\displaystyle {\mathcal {B}}\subseteq {\mathcal {A}}} that is closed under the involution *, i.e. B = B {\displaystyle {\mathcal {B}}={\mathcal {B}}^{*}} , is called self-adjoint.[2]

A special case from particular importance is the case where A {\displaystyle {\mathcal {A}}} is a complete normed *-algebra, that satisfies the C*-identity ( a a = a 2   a A {\displaystyle \left\|a^{*}a\right\|=\left\|a\right\|^{2}\ \forall a\in {\mathcal {A}}} ), which is called a C*-algebra.

Especially in the older literature on *-algebras and C*-algebras, such elements are often called hermitian.[1] Because of that the notations A h {\displaystyle {\mathcal {A}}_{h}} , A H {\displaystyle {\mathcal {A}}_{H}} or H ( A ) {\displaystyle H({\mathcal {A}})} for the set of self-adjoint elements are also sometimes used, even in the more recent literature.

Examples

  • Each positive element of a C*-algebra is self-adjoint.[3]
  • For each element a {\displaystyle a} of a *-algebra, the elements a a {\displaystyle aa^{*}} and a a {\displaystyle a^{*}a} are self-adjoint, since * is an involutive antiautomorphism.[4]
  • For each element a {\displaystyle a} of a *-algebra, the real and imaginary parts Re ( a ) = 1 2 ( a + a ) {\textstyle \operatorname {Re} (a)={\frac {1}{2}}(a+a^{*})} and Im ( a ) = 1 2 i ( a a ) {\textstyle \operatorname {Im} (a)={\frac {1}{2\mathrm {i} }}(a-a^{*})} are self-adjoint, where i {\displaystyle \mathrm {i} } denotes the imaginary unit.[1]
  • If a A N {\displaystyle a\in {\mathcal {A}}_{N}} is a normal element of a C*-algebra A {\displaystyle {\mathcal {A}}} , then for every real-valued function f {\displaystyle f} , which is continuous on the spectrum of a {\displaystyle a} , the continuous functional calculus defines a self-adjoint element f ( a ) {\displaystyle f(a)} .[5]

Criteria

Let A {\displaystyle {\mathcal {A}}} be a *-algebra. Then:

  • Let a A {\displaystyle a\in {\mathcal {A}}} , then a a {\displaystyle a^{*}a} is self-adjoint, since ( a a ) = a ( a ) = a a {\displaystyle (a^{*}a)^{*}=a^{*}(a^{*})^{*}=a^{*}a} . A similarly calculation yields that a a {\displaystyle aa^{*}} is also self-adjoint.[6]
  • Let a = a 1 a 2 {\displaystyle a=a_{1}a_{2}} be the product of two self-adjoint elements a 1 , a 2 A s a {\displaystyle a_{1},a_{2}\in {\mathcal {A}}_{sa}} . Then a {\displaystyle a} is self-adjoint if a 1 {\displaystyle a_{1}} and a 2 {\displaystyle a_{2}} commutate, since ( a 1 a 2 ) = a 2 a 1 = a 2 a 1 {\displaystyle (a_{1}a_{2})^{*}=a_{2}^{*}a_{1}^{*}=a_{2}a_{1}} always holds.[1]
  • If A {\displaystyle {\mathcal {A}}} is a C*-algebra, then a normal element a A N {\displaystyle a\in {\mathcal {A}}_{N}} is self-adjoint if and only if its spectrum is real, i.e. σ ( a ) R {\displaystyle \sigma (a)\subseteq \mathbb {R} } .[5]

Properties

In *-algebras

Let A {\displaystyle {\mathcal {A}}} be a *-algebra. Then:

  • Each element a A {\displaystyle a\in {\mathcal {A}}} can be uniquely decomposed into real and imaginary parts, i.e. there are uniquely determined elements a 1 , a 2 A s a {\displaystyle a_{1},a_{2}\in {\mathcal {A}}_{sa}} , so that a = a 1 + i a 2 {\displaystyle a=a_{1}+\mathrm {i} a_{2}} holds. Where a 1 = 1 2 ( a + a ) {\textstyle a_{1}={\frac {1}{2}}(a+a^{*})} and a 2 = 1 2 i ( a a ) {\textstyle a_{2}={\frac {1}{2\mathrm {i} }}(a-a^{*})} .[1]
  • The set of self-adjoint elements A s a {\displaystyle {\mathcal {A}}_{sa}} is a real linear subspace of A {\displaystyle {\mathcal {A}}} . From the previous property, it follows that A {\displaystyle {\mathcal {A}}} is the direct sum of two real linear subspaces, i.e. A = A s a i A s a {\displaystyle {\mathcal {A}}={\mathcal {A}}_{sa}\oplus \mathrm {i} {\mathcal {A}}_{sa}} .[7]
  • If a A s a {\displaystyle a\in {\mathcal {A}}_{sa}} is self-adjoint, then a {\displaystyle a} is normal.[1]
  • The *-algebra A {\displaystyle {\mathcal {A}}} is called a hermitian *-algebra if every self-adjoint element a A s a {\displaystyle a\in {\mathcal {A}}_{sa}} has a real spectrum σ ( a ) R {\displaystyle \sigma (a)\subseteq \mathbb {R} } .[8]

In C*-algebras

Let A {\displaystyle {\mathcal {A}}} be a C*-algebra and a A s a {\displaystyle a\in {\mathcal {A}}_{sa}} . Then:

  • For the spectrum a σ ( a ) {\displaystyle \left\|a\right\|\in \sigma (a)} or a σ ( a ) {\displaystyle -\left\|a\right\|\in \sigma (a)} holds, since σ ( a ) {\displaystyle \sigma (a)} is real and r ( a ) = a {\displaystyle r(a)=\left\|a\right\|} holds for the spectral radius, because a {\displaystyle a} is normal.[9]
  • According to the continuous functional calculus, there exist uniquely determined positive elements a + , a A + {\displaystyle a_{+},a_{-}\in {\mathcal {A}}_{+}} , such that a = a + a {\displaystyle a=a_{+}-a_{-}} with a + a = a a + = 0 {\displaystyle a_{+}a_{-}=a_{-}a_{+}=0} . For the norm, a = max ( a + , a ) {\displaystyle \left\|a\right\|=\max(\left\|a_{+}\right\|,\left\|a_{-}\right\|)} holds.[10] The elements a + {\displaystyle a_{+}} and a {\displaystyle a_{-}} are also referred to as the positive and negative parts. In addition, | a | = a + + a {\displaystyle |a|=a_{+}+a_{-}} holds for the absolute value defined for every element | a | = ( a a ) 1 2 {\textstyle |a|=(a^{*}a)^{\frac {1}{2}}} .[11]
  • For every a A + {\displaystyle a\in {\mathcal {A}}_{+}} and odd n N {\displaystyle n\in \mathbb {N} } , there exists a uniquely determined b A + {\displaystyle b\in {\mathcal {A}}_{+}} that satisfies b n = a {\displaystyle b^{n}=a} , i.e. a unique n {\displaystyle n} -th root, as can be shown with the continuous functional calculus.[12]

See also

Notes

  1. ^ a b c d e f Dixmier 1977, p. 4.
  2. ^ Dixmier 1977, p. 3.
  3. ^ Palmer 1977, p. 800. sfn error: no target: CITEREFPalmer1977 (help)
  4. ^ Dixmier 1977, pp. 3–4.
  5. ^ a b Kadison 1983, p. 271. sfn error: no target: CITEREFKadison1983 (help)
  6. ^ Palmer 1977, pp. 798–800. sfn error: no target: CITEREFPalmer1977 (help)
  7. ^ Palmer 1977, p. 798. sfn error: no target: CITEREFPalmer1977 (help)
  8. ^ Palmer 1977, p. 1008. sfn error: no target: CITEREFPalmer1977 (help)
  9. ^ Kadison 1983, p. 238. sfn error: no target: CITEREFKadison1983 (help)
  10. ^ Kadison 1983, p. 246. sfn error: no target: CITEREFKadison1983 (help)
  11. ^ Dixmier 1977, p. 15.
  12. ^ Blackadar 2006, p. 63.

References

  • Blackadar, Bruce (2006). Operator Algebras. Theory of C*-Algebras and von Neumann Algebras. Berlin/Heidelberg: Springer. p. 63. ISBN 3-540-28486-9.
  • Dixmier, Jacques (1977). C*-algebras. Translated by Jellett, Francis. Amsterdam/New York/Oxford: North-Holland. ISBN 0-7204-0762-1. English translation of Les C*-algèbres et leurs représentations (in French). Gauthier-Villars. 1969.
  • Kadison, Richard V.; Ringrose, John R. (1983). Fundamentals of the Theory of Operator Algebras. Volume 1 Elementary Theory. New York/London: Academic Press. ISBN 0-12-393301-3.
  • Palmer, Theodore W. (1994). Banach algebras and the general theory of*-algebras: Volume 2,*-algebras. Cambridge university press. ISBN 0-521-36638-0.
  • v
  • t
  • e
Spectral theory and *-algebras
Basic conceptsMain resultsSpecial Elements/Operators
SpectrumDecomposition
Spectral TheoremSpecial algebrasFinite-DimensionalGeneralizationsMiscellaneousExamplesApplications