Hurwitz matrix

Algebraic matrix element to analyze a polynomial by its coefficients

In mathematics, a Hurwitz matrix, or Routh–Hurwitz matrix, in engineering stability matrix, is a structured real square matrix constructed with coefficients of a real polynomial.

Hurwitz matrix and the Hurwitz stability criterion

Namely, given a real polynomial

p ( z ) = a 0 z n + a 1 z n 1 + + a n 1 z + a n {\displaystyle p(z)=a_{0}z^{n}+a_{1}z^{n-1}+\cdots +a_{n-1}z+a_{n}}

the n × n {\displaystyle n\times n} square matrix

H = ( a 1 a 3 a 5 0 0 0 a 0 a 2 a 4 0 a 1 a 3 a 0 a 2 0 0 a 1 a n a 0 a n 1 0 0 a n 2 a n a n 3 a n 1 0 0 0 0 a n 4 a n 2 a n ) . {\displaystyle H={\begin{pmatrix}a_{1}&a_{3}&a_{5}&\dots &\dots &\dots &0&0&0\\a_{0}&a_{2}&a_{4}&&&&\vdots &\vdots &\vdots \\0&a_{1}&a_{3}&&&&\vdots &\vdots &\vdots \\\vdots &a_{0}&a_{2}&\ddots &&&0&\vdots &\vdots \\\vdots &0&a_{1}&&\ddots &&a_{n}&\vdots &\vdots \\\vdots &\vdots &a_{0}&&&\ddots &a_{n-1}&0&\vdots \\\vdots &\vdots &0&&&&a_{n-2}&a_{n}&\vdots \\\vdots &\vdots &\vdots &&&&a_{n-3}&a_{n-1}&0\\0&0&0&\dots &\dots &\dots &a_{n-4}&a_{n-2}&a_{n}\end{pmatrix}}.}

is called Hurwitz matrix corresponding to the polynomial p {\displaystyle p} . It was established by Adolf Hurwitz in 1895 that a real polynomial with a 0 > 0 {\displaystyle a_{0}>0} is stable (that is, all its roots have strictly negative real part) if and only if all the leading principal minors of the matrix H ( p ) {\displaystyle H(p)} are positive:

Δ 1 ( p ) = | a 1 | = a 1 > 0 Δ 2 ( p ) = | a 1 a 3 a 0 a 2 | = a 2 a 1 a 0 a 3 > 0 Δ 3 ( p ) = | a 1 a 3 a 5 a 0 a 2 a 4 0 a 1 a 3 | = a 3 Δ 2 a 1 ( a 1 a 4 a 0 a 5 ) > 0 {\displaystyle {\begin{aligned}\Delta _{1}(p)&={\begin{vmatrix}a_{1}\end{vmatrix}}&&=a_{1}>0\\[2mm]\Delta _{2}(p)&={\begin{vmatrix}a_{1}&a_{3}\\a_{0}&a_{2}\\\end{vmatrix}}&&=a_{2}a_{1}-a_{0}a_{3}>0\\[2mm]\Delta _{3}(p)&={\begin{vmatrix}a_{1}&a_{3}&a_{5}\\a_{0}&a_{2}&a_{4}\\0&a_{1}&a_{3}\\\end{vmatrix}}&&=a_{3}\Delta _{2}-a_{1}(a_{1}a_{4}-a_{0}a_{5})>0\end{aligned}}}

and so on. The minors Δ k ( p ) {\displaystyle \Delta _{k}(p)} are called the Hurwitz determinants. Similarly, if a 0 < 0 {\displaystyle a_{0}<0} then the polynomial is stable if and only if the principal minors have alternating signs starting with a negative one.

Hurwitz stable matrices

In engineering and stability theory, a square matrix A {\displaystyle A} is called a Hurwitz matrix if every eigenvalue of A {\displaystyle A} has strictly negative real part, that is,

Re [ λ i ] < 0 {\displaystyle \operatorname {Re} [\lambda _{i}]<0\,}

for each eigenvalue λ i {\displaystyle \lambda _{i}} . A {\displaystyle A} is also called a stable matrix, because then the differential equation

x ˙ = A x {\displaystyle {\dot {x}}=Ax}

is asymptotically stable, that is, x ( t ) 0 {\displaystyle x(t)\to 0} as t . {\displaystyle t\to \infty .}

If G ( s ) {\displaystyle G(s)} is a (matrix-valued) transfer function, then G {\displaystyle G} is called Hurwitz if the poles of all elements of G {\displaystyle G} have negative real part. Note that it is not necessary that G ( s ) , {\displaystyle G(s),} for a specific argument s , {\displaystyle s,} be a Hurwitz matrix — it need not even be square. The connection is that if A {\displaystyle A} is a Hurwitz matrix, then the dynamical system

x ˙ ( t ) = A x ( t ) + B u ( t ) {\displaystyle {\dot {x}}(t)=Ax(t)+Bu(t)}
y ( t ) = C x ( t ) + D u ( t ) {\displaystyle y(t)=Cx(t)+Du(t)\,}

has a Hurwitz transfer function.

Any hyperbolic fixed point (or equilibrium point) of a continuous dynamical system is locally asymptotically stable if and only if the Jacobian of the dynamical system is Hurwitz stable at the fixed point.

The Hurwitz stability matrix is a crucial part of control theory. A system is stable if its control matrix is a Hurwitz matrix. The negative real components of the eigenvalues of the matrix represent negative feedback. Similarly, a system is inherently unstable if any of the eigenvalues have positive real components, representing positive feedback.

See also

References

  • Asner, Bernard A. Jr. (1970). "On the Total Nonnegativity of the Hurwitz Matrix". SIAM Journal on Applied Mathematics. 18 (2): 407–414. doi:10.1137/0118035. JSTOR 2099475.
  • Dimitrov, Dimitar K.; Peña, Juan Manuel (2005). "Almost strict total positivity and a class of Hurwitz polynomials". Journal of Approximation Theory. 132 (2): 212–223. doi:10.1016/j.jat.2004.10.010. hdl:11449/21728.
  • Gantmacher, F. R. (1959). Applications of the Theory of Matrices. New York: Interscience.
  • Hurwitz, A. (1895). "Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt". Mathematische Annalen. 46 (2): 273–284. doi:10.1007/BF01446812. S2CID 121036103.
  • Khalil, Hassan K. (2002). Nonlinear Systems. Prentice Hall.
  • Lehnigk, Siegfried H. (1970). "On the Hurwitz matrix". Zeitschrift für Angewandte Mathematik und Physik. 21 (3): 498–500. Bibcode:1970ZaMP...21..498L. doi:10.1007/BF01627957. S2CID 123380473.

This article incorporates material from Hurwitz matrix on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

External links

  • v
  • t
  • e
Matrix classes
Explicitly constrained entriesConstantConditions on eigenvalues or eigenvectorsSatisfying conditions on products or inversesWith specific applicationsUsed in statisticsUsed in graph theoryUsed in science and engineeringRelated terms