Manganese monosilicide

Manganese monosilicide

MnSi prepared by zone melting

Structures of left-handed and right-handed MnSi crystals (3 presentations, with different numbers of atoms per unit cell)
Names
IUPAC name
Manganese silicide
Identifiers
CAS Number
  • 12626-89-0 ☒N
3D model (JSmol)
  • Interactive image
PubChem CID
  • 49854137
InChI
  • InChI=1S/Mn.Si
    Key: PYLLWONICXJARP-UHFFFAOYSA-N
  • [Si].[Mn]
Properties
Chemical formula
MnSi
Molar mass 83.023 g/mol
Melting point 1,280 °C (2,340 °F; 1,550 K)[2]
Magnetic susceptibility (χ)
31.3×10−6 emu/g[1]
Thermal conductivity 0.1 W/(cm·K)[2]
Structure
Crystal structure
Cubic[3]
Space group
P213 (No. 198), cP8
Lattice constant
a = 0.45598(2) nm
Formula units (Z)
4
Hazards
Flash point Non-flammable
Related compounds
Other anions
Manganese germanide
Other cations
Iron silicide
Cobalt silicide
Related compounds
Manganese disilicide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N (what is checkY☒N ?)
Infobox references
Chemical compound

Manganese monosilicide (MnSi) is an intermetallic compound, a silicide of manganese. It occurs in cosmic dust as the mineral brownleeite. MnSi has a cubic crystal lattice with no inversion center; therefore its crystal structure is helical, with right-hand and left-hand chiralities.

MnSi is a paramagnetic metal that turns into a ferromagnet at cryogenic temperatures below 29 K. In the ferromagnetic state, the spatial arrangement of electron spins in MnSi changes with magnetic field, forming helical, conical, skyrmion, and regular ferromagnetic phases.

Crystal structure and magnetism

Magnetic phase diagram of MnSi. At low temperatures, with increasing magnetic field, spins in MnSi form helical, conical, skyrmion (SkS) and regular ferromagnetic spatial structures. At high temperatures the spin orientation is random (paramagnetic)
Simulated and measured (by STXM) images of helical, skyrmion and conical phases in FeGe. All magnetic properties are very similar in FeGe and MnSi, except for Tc values.

Manganese monosilicide is a non-stoichiometric compound, meaning that the 1:1 Mn:Si composition, lattice constant and many other properties vary depending on the synthesis and processing history of the crystal.[3]

MnSi has a cubic crystal lattice with no inversion center; therefore its crystal structure is helical, with right-hand and left-hand chiralities. At low temperatures and magnetic fields, the magnetic structure of MnSi can be described as a stack of ferromagnetically ordered layers lying parallel to the (111) crystallographic planes. The direction of magnetic moment varies from layer to layer by a small angle due to the antisymmetric exchange.[3]

Upon cooling to temperatures below Tc = 29 K, MnSi changes from a paramagnetic into a ferromagnetic state; the transition temperature Tc decreases with increasing pressure, vanishing at 1.4 GPa.[3]

Electron spins in MnSi show dissimilar, yet regular spatial arrangements at different values of applied magnetic field. Those arrangements are named helical, skyrmion, conical, and regular ferromagnetic. They can be controlled not only by temperature and magnetic field, but also by electric current, and the current density required for manipulating skyrmions (~106 A/m2) is approximately one million times smaller than that needed for moving magnetic domains in traditional ferromagnets. As a result, skyrmions in MnSi have potential application in ultrahigh-density magnetic storage devices.[4]

Synthesis

Centimeter-scale single crystals of MnSi can be prepared by direct crystallization from the melt using the Bridgman, zone melting or Czochralski methods.[3]

References

Wikimedia Commons has media related to Manganese silicide.
  1. ^ Shinoda, Daizaburo; Asanabe, Sizuo (1966). "Magnetic Properties of Silicides of Iron Group Transition Elements". Journal of the Physical Society of Japan. 21 (3): 555. Bibcode:1966JPSJ...21..555S. doi:10.1143/JPSJ.21.555.
  2. ^ a b Levinson, Lionel M. (1973). "Investigation of the defect manganese silicide MnnSi2n−m". Journal of Solid State Chemistry. 6 (1): 126–135. Bibcode:1973JSSCh...6..126L. doi:10.1016/0022-4596(73)90212-0.
  3. ^ a b c d e Stishov, Sergei M.; Petrova, Alla E. (2011). "Itinerant helimagnetic compound MnSi". Uspekhi Fizicheskikh Nauk. 181 (11): 1157. doi:10.3367/UFNr.0181.201111b.1157.
  4. ^ Nagaosa, Naoto; Tokura, Yoshinori (2013). "Topological properties and dynamics of magnetic skyrmions". Nature Nanotechnology. 8 (12): 899–911. Bibcode:2013NatNa...8..899N. doi:10.1038/nnano.2013.243. PMID 24302027.
  • v
  • t
  • e
Manganese(-I)
  • MnH(CO)5
Manganese(0)
  • Mn2(CO)10
Manganese(I)
  • (C5H4CH3)Mn(CO)3
  • Mn(CO)5Br
Manganese(II)
  • MnC2O4
  • MnO
  • Mn3(PO4)2
  • MnS
  • MnSe
  • MnTe
  • Mn(NO3)2
  • MnCO3
  • MnCl2
  • MnSO4
  • MnF2
  • MnBr2
  • MnI2
  • MnTiO3
  • MnMoO4
  • Mn(CH3COO)2
  • Mn(OH)2
  • MnSe2
  • Mn(ClO3)2
  • Mn(ClO4)2
  • Mn(C5H5)2
  • Mn(C3H5O3)2
  • C
    24
    H
    48
    MnO
    4
  • C
    36
    H
    70
    MnO
    4
Manganese(II,III)
  • Mn3O4
Manganese(II,IV)
  • Mn5O8
Manganese(III)
  • MnCl3
  • Mn2O3
  • MnF3
  • K6Mn2O6
  • MnAs
  • MnPO4
  • Mn(CH3COO)3
Manganese(IV)
  • MnS2
  • MnCl4
  • MnO2
  • MnF4
  • MnSi
  • MnGe
Manganese(V)
  • K3MnO4
  • MnF5 (predicted)
Manganese(VI)
  • H2MnO4
  • MnO3
  • Na2MnO4
  • K2MnO4
  • MnO2F2 (predicted)
Manganese(VII)
  • Mn2O7
  • KMnO4
  • MnO3F
  • v
  • t
  • e
Salts and covalent derivatives of the silicide ion
SiH4
+H
He
LiSi Be2Si SiB3
SiB6
+B
SiC
+C
Si3N4
-N
+N
SiO2 SiF4 Ne
NaSi Mg2Si Al Si4− SiP, SiP2
-P
+P
SiS2
-S
SiCl4 Ar
KSi CaSi
CaSi2
ScSi Sc5Si3 Sc2Si3 Sc5Si4 TiSi
TiSi2
V3Si V5Si3, V6Si5, VSi2, V6Si5 Cr3Si Cr5Si3, CrSi, CrSi2 MnSi, MnSi2, Mn9Si2, Mn3Si, Mn5Si3, Mn11Si9 FeSi2
FeSi
Fe5Si3
Fe2Si
Fe3Si
CoSi, CoSi2, Co2Si, Co3Si NiSi, more… Cu17Si3, Cu56Si11, Cu5Si, Cu33Si7, Cu4Si, Cu19Si6, Cu3Si, Cu87Si13 Zn Ga GeSi
+Ge
SiAs, SiAs2
-As
+As
SiSe2 SiSe SiBr4 Kr
RbSi SrSi2 YSi Y5Si3, Y5Si4, Y3Si5, YSi1.4 ZrSi Zr5Si3, Zr5Si4, ZrSi2, Zr3Si2, Zr2Si, Zr3Si Nb4Si Nb5Si3 MoSi2
Mo3Si Mo5Si3
Tc RuSi Ru2Si, Ru4Si3, Ru2Si3 RhSi Rh2Si, Rh5Si3, Rh3Si2, Rh20Si13 PdSi Pd5Si, Pd9Si2, Pd3Si, Pd2Si Ag Cd In Sn Sb TeSi2 Te2Si3 SiI4 Xe
CsSi Ba2Si BaSi2, Ba5Si3 Ba3Si4 * Lu5Si3 HfSi Hf2Si, Hf3Si2, Hf5Si4, HfSi2 Ta9Si2, Ta3Si, Ta5Si3 WSi2 W5Si3 ReSi Re2Si, ReSi1.8 Re5Si3 OsSi IrSi PtSi Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og
 
* LaSi2 La5Si3, La3Si2, La5Si4, LaSi CeSi2 Ce5Si3, Ce3Si2, Ce5Si4, CeSi, Ce3Si5 PrSi2 Pr5Si3, Pr3Si2, Pr5Si4, PrSi NdSi Nd5Si3, Nd5Si4, Nd5Si3, Nd3Si4, Nd2Si3, NdSix Pm SmSi2 Sm5Si4, Sm5Si3, SmSi, Sm3Si5 Eu? GdSi2 Gd5Si3, Gd5Si4, GdSi TbSi2 SiTb, Si4Tb5, Si3Tb5 DySi2 DySi HoSi2 Ho5Si3, Ho5Si4, HoSi, Ho4Si5 ErSi2 Er5Si3, Er5Si4, ErSi Tm? YbSi Si1.8Yb, Si5Yb3, Si4Yb3, Si4Yb5, Si3Yb5
** Ac ThSi PaSi USi2 NpSi2 PuSi Am Cm Bk Cf Es Fm Md No