偏相関

偏相関(へんそうかん、: partial correlation)は、別の交絡因子による影響を取り除いた関心のある2つの変数の間の相関を表す概念である。ピアソンの積率相関係数を使用すると、別の交絡因子がある場合に誤解を招く結果が得られる。この誤解を招く情報は、偏相関係数を計算し交絡変数を制御することによって回避できる。

偏相関係数は、ピアソンの積率相関係数と同様に、–1から1の範囲の値を取る。偏相関係数の値が–1のときは、別の交絡因子による影響を取り除いた完全な負の相関(線形関係)を表す。偏相関係数の値が1のときは完全な正の相関(線形関係)を表し、値が0のときは線形関係がないことを表す。

定義

n 個の制御変数 Z = {Z1, Z2, ..., Zn} が与えられた場合の XY の間の偏相関 ρXY·Z は、eXXZ で線形回帰したときの残差)と eYYZ で線形回帰したときの残差)の相関である。

計算

関連する2つの線形回帰問題を解き、残差を取得し、残差間の相関を計算する。

線形回帰の使用

X Y Z
2 1 0
4 2 0
15 3 1
20 4 1


> X = c(2,4,15,20)
> Y = c(1,2,3,4)
> Z = c(0,0,1,1)
> mm1 = lm(X~Z)
> res1 = mm1$residuals
> mm2 = lm(Y~Z)
> res2 = mm2$residuals
> cor(res1,res2)
[1] 0.919145
> cor(X,Y)
[1] 0.9695016
> generalCorr::parcorMany(cbind(X,Y,Z))
                 
     nami namj partij   partji rijMrji  
[1,] "X"  "Y"  "0.8844" "1"    "-0.1156"
[2,] "X"  "Z"  "0.1581" "1"    "-0.8419"

再帰式の使用

ρ X Y Z = ρ X Y Z { Z 0 } ρ X Z 0 Z { Z 0 } ρ Z 0 Y Z { Z 0 } 1 ρ X Z 0 Z { Z 0 } 2 1 ρ Z 0 Y Z { Z 0 } 2 . {\displaystyle \rho _{XY\cdot \mathbf {Z} }={\frac {\rho _{XY\cdot \mathbf {Z} \setminus \{Z_{0}\}}-\rho _{XZ_{0}\cdot \mathbf {Z} \setminus \{Z_{0}\}}\rho _{Z_{0}Y\cdot \mathbf {Z} \setminus \{Z_{0}\}}}{{\sqrt {1-\rho _{XZ_{0}\cdot \mathbf {Z} \setminus \{Z_{0}\}}^{2}}}{\sqrt {1-\rho _{Z_{0}Y\cdot \mathbf {Z} \setminus \{Z_{0}\}}^{2}}}}}.}

ρ X Y Z = ρ X Y ρ X Z ρ Z Y 1 ρ X Z 2 1 ρ Z Y 2 {\displaystyle \rho _{XY\cdot Z}={\frac {\rho _{XY}-\rho _{XZ}\rho _{ZY}}{{\sqrt {1-\rho _{XZ}^{2}}}{\sqrt {1-\rho _{ZY}^{2}}}}}}

逆行列の使用

ρ X i X j V { X i , X j } = p i j p i i p j j . {\displaystyle \rho _{X_{i}X_{j}\cdot \mathbf {V} \setminus \{X_{i},X_{j}\}}=-{\frac {p_{ij}}{\sqrt {p_{ii}p_{jj}}}}.}

解釈

N = 3 の観測データがあり、2次元の超平面がある場合の偏相関の幾何学的解釈

幾何学的

条件付き独立性テストとして

参照:フィッシャー変換

z ( ρ ^ X Y Z ) = 1 2 ln ( 1 + ρ ^ X Y Z 1 ρ ^ X Y Z ) . {\displaystyle z({\hat {\rho }}_{XY\cdot \mathbf {Z} })={\frac {1}{2}}\ln \left({\frac {1+{\hat {\rho }}_{XY\cdot \mathbf {Z} }}{1-{\hat {\rho }}_{XY\cdot \mathbf {Z} }}}\right).}

N | Z | 3 | z ( ρ ^ X Y Z ) | > Φ 1 ( 1 α / 2 ) , {\displaystyle {\sqrt {N-|\mathbf {Z} |-3}}\cdot |z({\hat {\rho }}_{XY\cdot \mathbf {Z} })|>\Phi ^{-1}(1-\alpha /2),}

半偏相関(部分相関)

時系列分析で使用

φ ( h ) = ρ X 0 X h { X 1 , , X h 1 } . {\displaystyle \varphi (h)=\rho _{X_{0}X_{h}\,\cdot \,\{X_{1},\,\dots \,,X_{h-1}\}}.}

関連項目

参考文献

外部リンク

ウィキバーシティに偏相関に関する学習教材があります。
  • Prokhorov, A.V. (2001), “Partial correlation coefficient”, in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4, https://www.encyclopediaofmath.org/index.php?title=Partial_correlation_coefficient&oldid=14288 
  • Mathematical formulae in the "Description" section of the IMSL Numerical Library PCORR routine
  • A three-variable example
標本調査
記述統計学
連続データ
位置
分散
モーメント
カテゴリデータ
推計統計学
仮説検定
パラメトリック
ノンパラメトリック
その他
区間推定
モデル選択基準
その他
ベイズ統計学
確率
その他
相関
相関係数
その他
モデル
回帰
線形
非線形
時系列
分類
線形
二次
非線形
その他
教師なし学習
クラスタリング
密度推定(英語版)
その他
統計図表
生存時間分析
歴史
  • 統計学の創始者
  • 確率論と統計学の歩み
応用
出版物
  • 統計学に関する学術誌一覧
  • 重要な出版物
全般
その他
カテゴリ カテゴリ