Bounded inverse theorem

In mathematics, the bounded inverse theorem (also called inverse mapping theorem or Banach isomorphism theorem) is a result in the theory of bounded linear operators on Banach spaces. It states that a bijective bounded linear operator T from one Banach space to another has bounded inverse T−1. It is equivalent to both the open mapping theorem and the closed graph theorem.

Generalization

Theorem[1] — If A : XY is a continuous linear bijection from a complete pseudometrizable topological vector space (TVS) onto a Hausdorff TVS that is a Baire space, then A : XY is a homeomorphism (and thus an isomorphism of TVSs).

Counterexample

This theorem may not hold for normed spaces that are not complete. For example, consider the space X of sequences x : N → R with only finitely many non-zero terms equipped with the supremum norm. The map T : X → X defined by

T x = ( x 1 , x 2 2 , x 3 3 , ) {\displaystyle Tx=\left(x_{1},{\frac {x_{2}}{2}},{\frac {x_{3}}{3}},\dots \right)}

is bounded, linear and invertible, but T−1 is unbounded. This does not contradict the bounded inverse theorem since X is not complete, and thus is not a Banach space. To see that it's not complete, consider the sequence of sequences x(n) ∈ X given by

x ( n ) = ( 1 , 1 2 , , 1 n , 0 , 0 , ) {\displaystyle x^{(n)}=\left(1,{\frac {1}{2}},\dots ,{\frac {1}{n}},0,0,\dots \right)}

converges as n → ∞ to the sequence x(∞) given by

x ( ) = ( 1 , 1 2 , , 1 n , ) , {\displaystyle x^{(\infty )}=\left(1,{\frac {1}{2}},\dots ,{\frac {1}{n}},\dots \right),}

which has all its terms non-zero, and so does not lie in X.

The completion of X is the space c 0 {\displaystyle c_{0}} of all sequences that converge to zero, which is a (closed) subspace of the ℓp space ℓ(N), which is the space of all bounded sequences. However, in this case, the map T is not onto, and thus not a bijection. To see this, one need simply note that the sequence

x = ( 1 , 1 2 , 1 3 , ) , {\displaystyle x=\left(1,{\frac {1}{2}},{\frac {1}{3}},\dots \right),}

is an element of c 0 {\displaystyle c_{0}} , but is not in the range of T : c 0 c 0 {\displaystyle T:c_{0}\to c_{0}} .

See also

  • Almost open linear map – Map that satisfies a condition similar to that of being an open map.Pages displaying short descriptions of redirect targets
  • Closed graph – Graph of a map closed in the product spacePages displaying short descriptions of redirect targets
  • Closed graph theorem – Theorem relating continuity to graphs
  • Open mapping theorem (functional analysis) – Condition for a linear operator to be open
  • Surjection of Fréchet spaces – Characterization of surjectivity
  • Webbed space – Space where open mapping and closed graph theorems hold

References

Bibliography

  • Köthe, Gottfried (1983) [1969]. Topological Vector Spaces I. Grundlehren der mathematischen Wissenschaften. Vol. 159. Translated by Garling, D.J.H. New York: Springer Science & Business Media. ISBN 978-3-642-64988-2. MR 0248498. OCLC 840293704.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Renardy, Michael; Rogers, Robert C. (2004). An introduction to partial differential equations. Texts in Applied Mathematics 13 (Second ed.). New York: Springer-Verlag. pp. 356. ISBN 0-387-00444-0. (Section 8.2)
  • Wilansky, Albert (2013). Modern Methods in Topological Vector Spaces. Mineola, New York: Dover Publications, Inc. ISBN 978-0-486-49353-4. OCLC 849801114.
  • v
  • t
  • e
Spaces
Properties
TheoremsOperatorsAlgebrasOpen problemsApplicationsAdvanced topics
  • Category
  • v
  • t
  • e
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
  • Category