Distinguished space

TVS whose strong dual is barralled

In functional analysis and related areas of mathematics, distinguished spaces are topological vector spaces (TVSs) having the property that weak-* bounded subsets of their biduals (that is, the strong dual space of their strong dual space) are contained in the weak-* closure of some bounded subset of the bidual.

Definition

Suppose that X {\displaystyle X} is a locally convex space and let X {\displaystyle X^{\prime }} and X b {\displaystyle X_{b}^{\prime }} denote the strong dual of X {\displaystyle X} (that is, the continuous dual space of X {\displaystyle X} endowed with the strong dual topology). Let X {\displaystyle X^{\prime \prime }} denote the continuous dual space of X b {\displaystyle X_{b}^{\prime }} and let X b {\displaystyle X_{b}^{\prime \prime }} denote the strong dual of X b . {\displaystyle X_{b}^{\prime }.} Let X σ {\displaystyle X_{\sigma }^{\prime \prime }} denote X {\displaystyle X^{\prime \prime }} endowed with the weak-* topology induced by X , {\displaystyle X^{\prime },} where this topology is denoted by σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} (that is, the topology of pointwise convergence on X {\displaystyle X^{\prime }} ). We say that a subset W {\displaystyle W} of X {\displaystyle X^{\prime \prime }} is σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} -bounded if it is a bounded subset of X σ {\displaystyle X_{\sigma }^{\prime \prime }} and we call the closure of W {\displaystyle W} in the TVS X σ {\displaystyle X_{\sigma }^{\prime \prime }} the σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} -closure of W {\displaystyle W} . If B {\displaystyle B} is a subset of X {\displaystyle X} then the polar of B {\displaystyle B} is B := { x X : sup b B b , x 1 } . {\displaystyle B^{\circ }:=\left\{x^{\prime }\in X^{\prime }:\sup _{b\in B}\left\langle b,x^{\prime }\right\rangle \leq 1\right\}.}

A Hausdorff locally convex space X {\displaystyle X} is called a distinguished space if it satisfies any of the following equivalent conditions:

  1. If W X {\displaystyle W\subseteq X^{\prime \prime }} is a σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} -bounded subset of X {\displaystyle X^{\prime \prime }} then there exists a bounded subset B {\displaystyle B} of X b {\displaystyle X_{b}^{\prime \prime }} whose σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} -closure contains W {\displaystyle W} .[1]
  2. If W X {\displaystyle W\subseteq X^{\prime \prime }} is a σ ( X , X ) {\displaystyle \sigma \left(X^{\prime \prime },X^{\prime }\right)} -bounded subset of X {\displaystyle X^{\prime \prime }} then there exists a bounded subset B {\displaystyle B} of X {\displaystyle X} such that W {\displaystyle W} is contained in B := { x X : sup x B x , x 1 } , {\displaystyle B^{\circ \circ }:=\left\{x^{\prime \prime }\in X^{\prime \prime }:\sup _{x^{\prime }\in B^{\circ }}\left\langle x^{\prime },x^{\prime \prime }\right\rangle \leq 1\right\},} which is the polar (relative to the duality X , X {\displaystyle \left\langle X^{\prime },X^{\prime \prime }\right\rangle } ) of B . {\displaystyle B^{\circ }.} [1]
  3. The strong dual of X {\displaystyle X} is a barrelled space.[1]

If in addition X {\displaystyle X} is a metrizable locally convex topological vector space then this list may be extended to include:

  1. (Grothendieck) The strong dual of X {\displaystyle X} is a bornological space.[1]

Sufficient conditions

All normed spaces and semi-reflexive spaces are distinguished spaces.[2] LF spaces are distinguished spaces.

The strong dual space X b {\displaystyle X_{b}^{\prime }} of a Fréchet space X {\displaystyle X} is distinguished if and only if X {\displaystyle X} is quasibarrelled.[3]

Properties

Every locally convex distinguished space is an H-space.[2]

Examples

There exist distinguished Banach spaces spaces that are not semi-reflexive.[1] The strong dual of a distinguished Banach space is not necessarily separable; l 1 {\displaystyle l^{1}} is such a space.[4] The strong dual space of a distinguished Fréchet space is not necessarily metrizable.[1] There exists a distinguished semi-reflexive non-reflexive non-quasibarrelled Mackey space X {\displaystyle X} whose strong dual is a non-reflexive Banach space.[1] There exist H-spaces that are not distinguished spaces.[1]

Fréchet Montel spaces are distinguished spaces.

See also

References

  1. ^ a b c d e f g h Khaleelulla 1982, pp. 32–63.
  2. ^ a b Khaleelulla 1982, pp. 28–63.
  3. ^ Gabriyelyan, S.S. "On topological spaces and topological groups with certain local countable networks (2014)
  4. ^ Khaleelulla 1982, pp. 32–630.

Bibliography

  • Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques". Annales de l'Institut Fourier (in French). 2: 5–16 (1951). doi:10.5802/aif.16. MR 0042609.
  • Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge England: Cambridge University Press. ISBN 978-0-521-29882-7. OCLC 589250.
  • Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN 978-3-540-09096-0. OCLC 4493665.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN 978-3-519-02224-4. OCLC 8210342.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN 978-1584888666. OCLC 144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN 978-1-4612-7155-0. OCLC 840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN 978-0-486-45352-1. OCLC 853623322.
  • v
  • t
  • e
Spaces
Properties
TheoremsOperatorsAlgebrasOpen problemsApplicationsAdvanced topics
  • Category
  • v
  • t
  • e
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
  • Category