Anderson–Kadec theorem

All infinite-dimensional, separable Banach spaces are homeomorphic

In mathematics, in the areas of topology and functional analysis, the Anderson–Kadec theorem states[1] that any two infinite-dimensional, separable Banach spaces, or, more generally, Fréchet spaces, are homeomorphic as topological spaces. The theorem was proved by Mikhail Kadec (1966) and Richard Davis Anderson.

Statement

Every infinite-dimensional, separable Fréchet space is homeomorphic to R N , {\displaystyle \mathbb {R} ^{\mathbb {N} },} the Cartesian product of countably many copies of the real line R . {\displaystyle \mathbb {R} .}

Preliminaries

Kadec norm: A norm {\displaystyle \|\,\cdot \,\|} on a normed linear space X {\displaystyle X} is called a Kadec norm with respect to a total subset A X {\displaystyle A\subseteq X^{*}} of the dual space X {\displaystyle X^{*}} if for each sequence x n X {\displaystyle x_{n}\in X} the following condition is satisfied:

  • If lim n x ( x n ) = x ( x 0 ) {\displaystyle \lim _{n\to \infty }x^{*}\left(x_{n}\right)=x^{*}(x_{0})} for x A {\displaystyle x^{*}\in A} and lim n x n = x 0 , {\displaystyle \lim _{n\to \infty }\left\|x_{n}\right\|=\left\|x_{0}\right\|,} then lim n x n x 0 = 0. {\displaystyle \lim _{n\to \infty }\left\|x_{n}-x_{0}\right\|=0.}

Eidelheit theorem: A Fréchet space E {\displaystyle E} is either isomorphic to a Banach space, or has a quotient space isomorphic to R N . {\displaystyle \mathbb {R} ^{\mathbb {N} }.}

Kadec renorming theorem: Every separable Banach space X {\displaystyle X} admits a Kadec norm with respect to a countable total subset A X {\displaystyle A\subseteq X^{*}} of X . {\displaystyle X^{*}.} The new norm is equivalent to the original norm {\displaystyle \|\,\cdot \,\|} of X . {\displaystyle X.} The set A {\displaystyle A} can be taken to be any weak-star dense countable subset of the unit ball of X {\displaystyle X^{*}}

Sketch of the proof

In the argument below E {\displaystyle E} denotes an infinite-dimensional separable Fréchet space and {\displaystyle \simeq } the relation of topological equivalence (existence of homeomorphism).

A starting point of the proof of the Anderson–Kadec theorem is Kadec's proof that any infinite-dimensional separable Banach space is homeomorphic to R N . {\displaystyle \mathbb {R} ^{\mathbb {N} }.}

From Eidelheit theorem, it is enough to consider Fréchet space that are not isomorphic to a Banach space. In that case there they have a quotient that is isomorphic to R N . {\displaystyle \mathbb {R} ^{\mathbb {N} }.} A result of Bartle-Graves-Michael proves that then

E Y × R N {\displaystyle E\simeq Y\times \mathbb {R} ^{\mathbb {N} }}
for some Fréchet space Y . {\displaystyle Y.}

On the other hand, E {\displaystyle E} is a closed subspace of a countable infinite product of separable Banach spaces X = n = 1 X i {\textstyle X=\prod _{n=1}^{\infty }X_{i}} of separable Banach spaces. The same result of Bartle-Graves-Michael applied to X {\displaystyle X} gives a homeomorphism

X E × Z {\displaystyle X\simeq E\times Z}
for some Fréchet space Z . {\displaystyle Z.} From Kadec's result the countable product of infinite-dimensional separable Banach spaces X {\displaystyle X} is homeomorphic to R N . {\displaystyle \mathbb {R} ^{\mathbb {N} }.}

The proof of Anderson–Kadec theorem consists of the sequence of equivalences

R N ( E × Z ) N E N × Z N E × E N × Z N E × R N Y × R N × R N Y × R N E {\displaystyle {\begin{aligned}\mathbb {R} ^{\mathbb {N} }&\simeq (E\times Z)^{\mathbb {N} }\\&\simeq E^{\mathbb {N} }\times Z^{\mathbb {N} }\\&\simeq E\times E^{\mathbb {N} }\times Z^{\mathbb {N} }\\&\simeq E\times \mathbb {R} ^{\mathbb {N} }\\&\simeq Y\times \mathbb {R} ^{\mathbb {N} }\times \mathbb {R} ^{\mathbb {N} }\\&\simeq Y\times \mathbb {R} ^{\mathbb {N} }\\&\simeq E\end{aligned}}}

See also

Notes

References

  • Bessaga, C.; Pełczyński, A. (1975), Selected Topics in Infinite-Dimensional Topology, Monografie Matematyczne, Warszawa: Panstwowe wyd. naukowe.
  • Torunczyk, H. (1981), Characterizing Hilbert Space Topology, Fundamenta Mathematicae, pp. 247–262.
  • v
  • t
  • e
Functional analysis (topicsglossary)
Spaces
Properties
TheoremsOperatorsAlgebrasOpen problemsApplicationsAdvanced topics
  • Category
  • v
  • t
  • e
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
  • Category