Brownian meander

In the mathematical theory of probability, Brownian meander W + = { W t + , t [ 0 , 1 ] } {\displaystyle W^{+}=\{W_{t}^{+},t\in [0,1]\}} is a continuous non-homogeneous Markov process defined as follows:

Let W = { W t , t 0 } {\displaystyle W=\{W_{t},t\geq 0\}} be a standard one-dimensional Brownian motion, and τ := sup { t [ 0 , 1 ] : W t = 0 } {\displaystyle \tau :=\sup\{t\in [0,1]:W_{t}=0\}} , i.e. the last time before t = 1 when W {\displaystyle W} visits { 0 } {\displaystyle \{0\}} . Then the Brownian meander is defined by the following:

W t + := 1 1 τ | W τ + t ( 1 τ ) | , t [ 0 , 1 ] . {\displaystyle W_{t}^{+}:={\frac {1}{\sqrt {1-\tau }}}|W_{\tau +t(1-\tau )}|,\quad t\in [0,1].}

In words, let τ {\displaystyle \tau } be the last time before 1 that a standard Brownian motion visits { 0 } {\displaystyle \{0\}} . ( τ < 1 {\displaystyle \tau <1} almost surely.) We snip off and discard the trajectory of Brownian motion before τ {\displaystyle \tau } , and scale the remaining part so that it spans a time interval of length 1. The scaling factor for the spatial axis must be square root of the scaling factor for the time axis. The process resulting from this snip-and-scale procedure is a Brownian meander. As the name suggests, it is a piece of Brownian motion that spends all its time away from its starting point { 0 } {\displaystyle \{0\}} .

The transition density p ( s , x , t , y ) d y := P ( W t + d y W s + = x ) {\displaystyle p(s,x,t,y)\,dy:=P(W_{t}^{+}\in dy\mid W_{s}^{+}=x)} of Brownian meander is described as follows:

For 0 < s < t 1 {\displaystyle 0<s<t\leq 1} and x , y > 0 {\displaystyle x,y>0} , and writing

φ t ( x ) := exp { x 2 / ( 2 t ) } 2 π t and Φ t ( x , y ) := x y φ t ( w ) d w , {\displaystyle \varphi _{t}(x):={\frac {\exp\{-x^{2}/(2t)\}}{\sqrt {2\pi t}}}\quad {\text{and}}\quad \Phi _{t}(x,y):=\int _{x}^{y}\varphi _{t}(w)\,dw,}

we have

p ( s , x , t , y ) d y := P ( W t + d y W s + = x ) = ( φ t s ( y x ) φ t s ( y + x ) ) Φ 1 t ( 0 , y ) Φ 1 s ( 0 , x ) d y {\displaystyle {\begin{aligned}p(s,x,t,y)\,dy:={}&P(W_{t}^{+}\in dy\mid W_{s}^{+}=x)\\={}&{\bigl (}\varphi _{t-s}(y-x)-\varphi _{t-s}(y+x){\bigl )}{\frac {\Phi _{1-t}(0,y)}{\Phi _{1-s}(0,x)}}\,dy\end{aligned}}}

and

p ( 0 , 0 , t , y ) d y := P ( W t + d y ) = 2 2 π y t φ t ( y ) Φ 1 t ( 0 , y ) d y . {\displaystyle p(0,0,t,y)\,dy:=P(W_{t}^{+}\in dy)=2{\sqrt {2\pi }}{\frac {y}{t}}\varphi _{t}(y)\Phi _{1-t}(0,y)\,dy.}

In particular,

P ( W 1 + d y ) = y exp { y 2 / 2 } d y , y > 0 , {\displaystyle P(W_{1}^{+}\in dy)=y\exp\{-y^{2}/2\}\,dy,\quad y>0,}

i.e. W 1 + {\displaystyle W_{1}^{+}} has the Rayleigh distribution with parameter 1, the same distribution as 2 e {\displaystyle {\sqrt {2\mathbf {e} }}} , where e {\displaystyle \mathbf {e} } is an exponential random variable with parameter 1.

References

  • Durett, Richard; Iglehart, Donald; Miller, Douglas (1977). "Weak convergence to Brownian meander and Brownian excursion". The Annals of Probability. 5 (1): 117–129. doi:10.1214/aop/1176995895.
  • Revuz, Daniel; Yor, Marc (1999). Continuous Martingales and Brownian Motion (2nd ed.). New York: Springer-Verlag. ISBN 3-540-57622-3.
  • v
  • t
  • e
Stochastic processes
Discrete time
Continuous timeBothFields and otherTime series modelsFinancial modelsActuarial modelsQueueing modelsPropertiesLimit theoremsInequalitiesToolsDisciplines


Stub icon

This probability-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e