Lucky numbers of Euler

Euler's "lucky" numbers are positive integers n such that for all integers k with 1 ≤ k < n, the polynomial k2k + n produces a prime number.

When k is equal to n, the value cannot be prime since n2n + n = n2 is divisible by n. Since the polynomial can be written as k(k−1) + n, using the integers k with −(n−1) < k ≤ 0 produces the same set of numbers as 1 ≤ k < n. These polynomials are all members of the larger set of prime generating polynomials.

Leonhard Euler published the polynomial k2k + 41 which produces prime numbers for all integer values of k from 1 to 40. Only 6 lucky numbers of Euler exist, namely 2, 3, 5, 11, 17 and 41 (sequence A014556 in the OEIS). Note that these numbers are all prime numbers.

The primes of the form k2k + 41 are

41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 853, 911, 971, ... (sequence A005846 in the OEIS).[1]

Euler's lucky numbers are unrelated to the "lucky numbers" defined by a sieve algorithm. In fact, the only number which is both lucky and Euler-lucky is 3, since all other Euler-lucky numbers are congruent to 2 modulo 3, but no lucky numbers are congruent to 2 modulo 3.

See also

References

  1. ^ See also the sieve algorithm for all such primes: (sequence A330673 in the OEIS)

Literature

  • Le Lionnais, F. Les Nombres Remarquables. Paris: Hermann, pp. 88 and 144, 1983.
  • Leonhard Euler, Extrait d'un lettre de M. Euler le pere à M. Bernoulli concernant le Mémoire imprimé parmi ceux de 1771, p. 318 (1774). Euler Archive - All Works. 461.

External links

  • Weisstein, Eric W. "Lucky Number of Euler". MathWorld.
  • v
  • t
  • e
Classes of natural numbers
Of the form a × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via a sieve
  • Mathematics portal
Stub icon

This article about a number is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e