OSIRIS-REx

NASA sample return mission, launched in 2016

OSIRIS-REx
OSIRIS-APEX
Artist's rendering of the OSIRIS-REx spacecraft
NamesOSIRIS-REx
OSIRIS-APEX
Mission typeAsteroid sample return[1]
OperatorNASA / Lockheed Martin
COSPAR ID2016-055A Edit this at Wikidata
SATCAT no.41757
Websitewww.asteroidmission.org
Mission duration7 years (planned)
889 days at asteroid (actual)
7 years, 7 months, 6 days (elapsed)
Spacecraft properties
ManufacturerLockheed Martin
Launch mass2,110 kg (4,650 lb)[2]
Dry mass880 kg (1,940 lb)
Dimensions2.44 × 2.44 × 3.15 m (8 ft 0 in × 8 ft 0 in × 10 ft 4 in)
Power1226 to 3000 watts
Start of mission
Launch date8 September 2016, 23:05 UTC[3]
RocketAtlas V 411 (AV-067)
Launch siteCape Canaveral SLC-41
ContractorUnited Launch Alliance (ULA)
End of mission
DisposalSample Return Capsule: Recovered
Landing dateSample Return Capsule: 24 September 2023, 14:52 UTC[4]
Landing siteUtah Test and Training Range[4]
Orbital parameters
Reference systemBennu-centric
Altitude0.68–2.1 km (0.42–1.30 mi)[5][6]
Period22–62 hours[7][6]
Flyby of Earth
Closest approach22 September 2017[2][8]
Distance17,237 km (10,711 mi)
Bennu orbiter
Orbital insertion31 December 2018[9]
(Rendezvous: 3 December 2018)
Orbital departure10 May 2021[10]
Sample mass~121.6 g (4.29 oz)[11][12]
Bennu lander
Landing date20 October 2020, 22:13 (2024-04-15UTC19:45:43) UTC
Landing site"Nightingale"
Flyby of Bennu
Closest approach7 April 2021[13]
Distance3.5 km (2.2 mi)
Instruments
OCAMSOSIRIS-REx Camera Suite
OLAOSIRIS-REx Laser Altimeter
OTESOSIRIS-REx Thermal Emission Spectrometer
OVIRSOSIRIS-REx Visible and Infrared Spectrometer
REXISRegolith X-ray Imaging Spectrometer
TAGSAMTouch-And-Go Sample Acquisition Mechanism

OSIRIS-REx mission logo
New Frontiers program
← Juno
Dragonfly →
 
OSIRIS-REx in Launch Configuration

OSIRIS-REx[a] was a NASA asteroid-study and sample-return mission that visited and collected samples from 101955 Bennu, a carbonaceous near-Earth asteroid.[14] The material, returned in September 2023, is expected to enable scientists to learn more about the formation and evolution of the Solar System, its initial stages of planet formation, and the source of organic compounds that led to the formation of life on Earth.[15] Following the completion of the primary OSIRIS-REx (Regolith Explorer) mission, the spacecraft is planned to conduct a flyby of asteroid 99942 Apophis, now as OSIRIS-APEX (Apophis Explorer).[16]

OSIRIS-REx was launched on 8 September 2016, flew past Earth on 22 September 2017, and rendezvoused with Bennu on 3 December 2018.[17] It spent the next two years analyzing the surface to find a suitable site from which to extract a sample. On 20 October 2020, OSIRIS-REx touched down on Bennu and successfully collected a sample.[18][19][20][21] OSIRIS-REx left Bennu on 10 May 2021[22][23] and returned its sample to Earth on 24 September 2023,[24] subsequently starting its extended mission to study 99942 Apophis, where it will arrive in April 2029.

Bennu was chosen as the target of study because it is a "time capsule" from the birth of the Solar System.[25] Bennu has a very dark surface and is classified as a B-type asteroid, a sub-type of the carbonaceous C-type asteroids. Such asteroids are considered primitive, having undergone little geological change from their time of formation. In particular, Bennu was selected because of the availability of pristine carbonaceous material, a key element in organic molecules necessary for life as well as representative of matter from before the formation of Earth. Organic molecules, such as amino acids, have previously been found in meteorite and comet samples, indicating that some ingredients necessary for life can be naturally synthesized in outer space.[1]

The cost of the OSIRIS-REx mission is approximately US$800 million,[26] not including the Atlas V launch vehicle, which is about US$183.5 million.[27] The OSIRIS-APEX extended mission costs an additional US$200 million.[16] It is the third planetary science mission selected in the New Frontiers program, after Juno and New Horizons. The principal investigator is Dante Lauretta[28] from the University of Arizona, having taken over in 2011 after the original PI Michael Julian Drake died four months after the mission won approval from NASA.

OSIRIS-REx was the first United States spacecraft to return samples from an asteroid. Previous asteroid returns include the Japanese probes Hayabusa, which visited 25143 Itokawa in 2010; and Hayabusa2, which visited 162173 Ryugu in June 2018.

Mission

Overall management, engineering, and navigation for the OSIRIS missions are provided by NASA's Goddard Space Flight Center, while the University of Arizona's Lunar and Planetary Laboratory provides principal science operations. Lockheed Martin Space Systems built the spacecraft and provides mission operations.[2] The science team includes members from the United States, Canada, France, Germany, the United Kingdom, and Italy.[29]

After traveling for approximately two years, the spacecraft rendezvoused with asteroid 101955 Bennu in December 2018,[30] and began 505 days of surface mapping at a distance of approximately 5 km (3.1 mi).[1] Results of that mapping were used by the mission team to select the site from which to take a sample of the asteroid's surface.[31] Then a close approach (without landing) was carried out to allow extension of a robotic arm to gather the sample.[32]

Following the collection of material (121.6 grams),[11] the sample was returned to Earth in a 46 kg (101 lb) capsule similar to that which returned the samples of Comet 81P/Wild on the space probe Stardust. The return trip to Earth was shorter than the outbound trip. The capsule landed by parachute at the Utah Test and Training Range on September 24, 2023 and was transported to the Johnson Space Center for processing in a dedicated research facility.[1]

  • Asteroid Bennu, imaged by the OSIRIS-REx probe, 3 December 2018
    Asteroid Bennu, imaged by the OSIRIS-REx probe, 3 December 2018
  • OSIRIS-REx mission overview video
  • OSIRIS-REx launch

Launch

The launch was on 8 September 2016 at 23:05 UTC on a United Launch Alliance Atlas V 411 from Cape Canaveral, Space Launch Complex 41.[3] The 411 rocket configuration consists of a RD-180 powered first stage with a single AJ-60A solid fuel booster, and a Centaur upper stage.[33] OSIRIS-REx separated from the launch vehicle 55 minutes after ignition.[2] The launch was declared "exactly perfect" by the mission's principal investigator, with no anomalies before or during launch.[34]

Cruise phase

OSIRIS-REx entered the cruise phase shortly after separation from the launch vehicle, following successful solar panel deployment, propulsion system initiation, and establishment of a communication link with Earth.[34] Its hyperbolic escape speed from Earth was about 5.41 km/s (3.36 mi/s).[35] On 28 December 2016, the spacecraft successfully performed its first deep space maneuver to change its velocity by 431 m/s (1,550 km/h) using 354 kg (780 lb) of fuel.[36][37] An additional, smaller firing of its thrusters on 18 January 2017 further refined its course for an Earth gravity assist on 22 September 2017.[36] The cruise phase lasted until its encounter with Bennu in December 2018,[30] after which it entered its science and sample collection phase.[36]

During its cruise phase, OSIRIS-REx was used to search for a class of near-Earth objects known as Earth-Trojan asteroids as it passed through Sun–Earth L4 Lagrange point. Between 9–20 February 2017, the OSIRIS-REx team used the spacecraft's MapCam camera to search for the objects, taking about 135 survey images each day for processing by scientists at the University of Arizona. The search was beneficial even though no new trojans were found,[38] as it closely resembled the operation required as the spacecraft approached Bennu, searching for natural satellites and other potential hazards.[37][39] On 12 February 2017, while 673×10^6 km (418×10^6 mi) from Jupiter, the PolyCam instrument aboard OSIRIS-REx successfully imaged the giant planet and three of its moons, Callisto, Io, and Ganymede.[40]

OSIRIS-REx flew by Earth on 22 September 2017.[41]

Arrival and survey

On 3 December 2018, NASA confirmed that OSIRIS-REx had matched the speed and orbit of Bennu at a distance of about 19 km (12 mi), effectively reaching the asteroid. OSIRIS-REx performed closer passes of the Bennu surface, initially at about 6.5 km (4.0 mi) through December to further refine the shape and orbit of Bennu. Preliminary spectroscopic surveys of the asteroid's surface by the OSIRIS-REx spacecraft detected the presence of hydrated minerals in the form of clay. While researchers suspect that Bennu was too small to host water, the hydroxyl groups may have come from water present in its parent body before Bennu split off.[42][43]

OSIRIS-REx entered orbit around Bennu on 31 December 2018 at about 1.75 km (1.09 mi) to start its extensive remote mapping and sensing campaign for the selection of a sample site. This is the closest distance that any spacecraft has orbited a celestial object, closer than the Rosetta's orbit of comet 67P/Churyumov–Gerasimenko at 7 km (4.3 mi).[17][44] At this altitude, it took the spacecraft 62 hours to orbit Bennu.[45] At the end of its detailed survey, the spacecraft entered a closer orbit with a radius of 1 km (0.62 mi).[46]

  OSIRIS-REx ·   101955 Bennu ·   Earth ·   Sun