TGF beta 1

Protein-coding gene in the species Homo sapiens
TGFB1
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1KLA, 1KLC, 1KLD, 3KFD, 4KV5

Identifiers
AliasesTGFB1, CED, DPD1, LAP, TGFB, TGFbeta, transforming growth factor beta 1, IBDIMDE, TGF-beta1
External IDsOMIM: 190180 MGI: 98725 HomoloGene: 540 GeneCards: TGFB1
Gene location (Human)
Chromosome 19 (human)
Chr.Chromosome 19 (human)[1]
Chromosome 19 (human)
Genomic location for TGFB1
Genomic location for TGFB1
Band19q13.2Start41,301,587 bp[1]
End41,353,922 bp[1]
Gene location (Mouse)
Chromosome 7 (mouse)
Chr.Chromosome 7 (mouse)[2]
Chromosome 7 (mouse)
Genomic location for TGFB1
Genomic location for TGFB1
Band7 A3|7 13.98 cMStart25,386,427 bp[2]
End25,404,502 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • monocyte

  • stromal cell of endometrium

  • ascending aorta

  • right coronary artery

  • spleen

  • right lung

  • canal of the cervix

  • blood

  • upper lobe of left lung

  • left coronary artery
Top expressed in
  • molar

  • calvaria

  • spleen

  • thymus

  • body of femur

  • ankle

  • lip

  • blood

  • subcutaneous adipose tissue

  • yolk sac
More reference expression data
BioGPS


More reference expression data
Gene ontology
Molecular function
  • type II transforming growth factor beta receptor binding
  • protein N-terminus binding
  • cytokine activity
  • enzyme binding
  • growth factor activity
  • antigen binding
  • type I transforming growth factor beta receptor binding
  • protein homodimerization activity
  • protein serine/threonine kinase activator activity
  • protein binding
  • protein heterodimerization activity
  • type III transforming growth factor beta receptor binding
  • transforming growth factor beta receptor binding
  • identical protein binding
Cellular component
  • cytoplasm
  • extracellular region
  • nucleus
  • microvillus
  • cell surface
  • blood microparticle
  • plasma membrane
  • secretory granule
  • axon
  • neuronal cell body
  • Golgi lumen
  • platelet alpha granule lumen
  • extracellular matrix
  • extracellular space
Biological process
  • positive regulation of histone deacetylation
  • positive regulation of transcription regulatory region DNA binding
  • ureteric bud development
  • tolerance induction to self antigen
  • positive regulation of protein phosphorylation
  • endoderm development
  • response to cholesterol
  • positive regulation of MAP kinase activity
  • regulation of sodium ion transport
  • response to progesterone
  • negative regulation of cell cycle
  • response to organic substance
  • mammary gland development
  • T cell homeostasis
  • negative regulation of ossification
  • negative regulation of hyaluronan biosynthetic process
  • protein phosphorylation
  • T cell differentiation
  • positive regulation of vascular permeability
  • animal organ regeneration
  • positive regulation of blood vessel endothelial cell migration
  • negative regulation of epithelial cell proliferation
  • regulation of binding
  • inner ear development
  • myelination
  • negative regulation of macrophage cytokine production
  • cell population proliferation
  • transforming growth factor beta receptor signaling pathway
  • face morphogenesis
  • negative regulation of cell population proliferation
  • positive regulation of receptor clustering
  • regulation of apoptotic process
  • positive regulation of collagen biosynthetic process
  • cellular response to transforming growth factor beta stimulus
  • pathway-restricted SMAD protein phosphorylation
  • regulation of DNA binding
  • regulation of actin cytoskeleton reorganization
  • negative regulation of fat cell differentiation
  • positive regulation of protein metabolic process
  • cell-cell junction organization
  • negative regulation of myoblast differentiation
  • positive regulation of protein kinase B signaling
  • common-partner SMAD protein phosphorylation
  • positive regulation of branching involved in ureteric bud morphogenesis
  • SMAD protein signal transduction
  • epidermal growth factor receptor signaling pathway
  • macrophage derived foam cell differentiation
  • negative regulation of blood vessel endothelial cell migration
  • positive regulation of protein dephosphorylation
  • extrinsic apoptotic signaling pathway
  • negative regulation of extracellular matrix disassembly
  • mitotic cell cycle checkpoint signaling
  • positive regulation of fibroblast proliferation
  • negative regulation of cell differentiation
  • regulation of branching involved in mammary gland duct morphogenesis
  • positive regulation of exit from mitosis
  • negative regulation of transforming growth factor beta receptor signaling pathway
  • negative regulation of gene expression
  • morphogenesis of a branching structure
  • regulation of SMAD protein signal transduction
  • positive regulation of peptidyl-serine phosphorylation
  • cell activation
  • negative regulation of neuroblast proliferation
  • positive regulation of transcription, DNA-templated
  • cell growth
  • negative regulation of T cell proliferation
  • response to wounding
  • negative regulation of cell growth
  • positive regulation of chemotaxis
  • protein export from nucleus
  • regulation of protein import into nucleus
  • positive regulation of peptidyl-tyrosine phosphorylation
  • positive regulation of protein import into nucleus
  • positive regulation of cardiac muscle cell differentiation
  • oligodendrocyte development
  • positive regulation of interleukin-17 production
  • inflammatory response
  • negative regulation of interleukin-17 production
  • lymph node development
  • T cell activation
  • Notch signaling pathway
  • negative regulation of protein phosphorylation
  • regulation of blood vessel remodeling
  • SMAD protein complex assembly
  • regulation of striated muscle tissue development
  • response to vitamin D
  • chondrocyte differentiation
  • regulatory T cell differentiation
  • regulation of cartilage development
  • branch elongation involved in mammary gland duct branching
  • positive regulation of bone mineralization
  • positive regulation of epithelial cell proliferation
  • female pregnancy
  • cellular response to organic cyclic compound
  • positive regulation of extracellular matrix assembly
  • cellular calcium ion homeostasis
  • wound healing
  • negative regulation of transcription by RNA polymerase II
  • response to glucose
  • positive regulation of epithelial to mesenchymal transition
  • cellular response to dexamethasone stimulus
  • negative regulation of production of miRNAs involved in gene silencing by miRNA
  • mitigation of host defenses by virus
  • lens fiber cell differentiation
  • positive regulation of NF-kappaB transcription factor activity
  • extracellular matrix assembly
  • ATP biosynthetic process
  • hematopoietic progenitor cell differentiation
  • regulation of interleukin-23 production
  • positive regulation of protein secretion
  • frontal suture morphogenesis
  • epithelial to mesenchymal transition
  • phosphate-containing compound metabolic process
  • regulation of gene expression
  • adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains
  • negative regulation of release of sequestered calcium ion into cytosol
  • response to radiation
  • mononuclear cell proliferation
  • negative regulation of transcription, DNA-templated
  • negative regulation of T cell activation
  • positive regulation of odontogenesis
  • lipopolysaccharide-mediated signaling pathway
  • positive regulation of protein localization to nucleus
  • response to estradiol
  • regulation of cell migration
  • response to hypoxia
  • hyaluronan catabolic process
  • negative regulation of phagocytosis
  • response to organic cyclic compound
  • positive regulation of protein-containing complex assembly
  • protein kinase B signaling
  • negative regulation of cell-cell adhesion
  • negative regulation of gene silencing by miRNA
  • positive regulation of regulatory T cell differentiation
  • cellular response to growth factor stimulus
  • positive regulation of pathway-restricted SMAD protein phosphorylation
  • mammary gland branching involved in thelarche
  • response to laminar fluid shear stress
  • human ageing
  • regulation of regulatory T cell differentiation
  • platelet degranulation
  • negative regulation of DNA replication
  • myeloid dendritic cell differentiation
  • salivary gland morphogenesis
  • receptor catabolic process
  • MAPK cascade
  • positive regulation of histone acetylation
  • regulation of transforming growth factor beta receptor signaling pathway
  • positive regulation of phosphatidylinositol 3-kinase activity
  • negative regulation of protein localization to plasma membrane
  • positive regulation of NAD+ ADP-ribosyltransferase activity
  • negative regulation of immune response
  • regulation of cell population proliferation
  • negative regulation of skeletal muscle tissue development
  • positive regulation of peptidyl-threonine phosphorylation
  • positive regulation of smooth muscle cell differentiation
  • positive regulation of isotype switching to IgA isotypes
  • connective tissue replacement involved in inflammatory response wound healing
  • ossification involved in bone remodeling
  • positive regulation of apoptotic process
  • positive regulation of vascular endothelial growth factor production
  • positive regulation of superoxide anion generation
  • digestive tract development
  • cell migration
  • positive regulation of fibroblast migration
  • positive regulation of cell division
  • germ cell migration
  • positive regulation of transcription by RNA polymerase II
  • negative regulation of mitotic cell cycle
  • positive regulation of SMAD protein signal transduction
  • positive regulation of pri-miRNA transcription by RNA polymerase II
  • positive regulation of gene expression
  • positive regulation of cell population proliferation
  • liver regeneration
  • regulation of epithelial to mesenchymal transition involved in endocardial cushion formation
  • positive regulation of mononuclear cell migration
  • cellular response to insulin-like growth factor stimulus
  • positive regulation of cell migration
  • response to immobilization stress
  • cellular response to mechanical stimulus
  • cellular response to ionizing radiation
  • vasculogenesis
  • neural tube closure
  • heart valve morphogenesis
  • heart development
  • neural tube development
  • membrane protein intracellular domain proteolysis
  • leukocyte migration
  • ventricular cardiac muscle tissue morphogenesis
  • positive regulation of ERK1 and ERK2 cascade
  • transforming growth factor beta receptor signaling pathway involved in heart development
  • embryonic liver development
  • BMP signaling pathway
  • cell development
  • apoptotic process
  • regulation of pri-miRNA transcription by RNA polymerase II
  • positive regulation of production of miRNAs involved in gene silencing by miRNA
  • regulation of signaling receptor activity
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

7040

21803

Ensembl

ENSG00000105329

ENSMUSG00000002603

UniProt

P01137

P04202

RefSeq (mRNA)

NM_000660

NM_011577

RefSeq (protein)

NP_000651

NP_035707

Location (UCSC)Chr 19: 41.3 – 41.35 MbChr 7: 25.39 – 25.4 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Transforming growth factor beta 1 or TGF-β1 is a polypeptide member of the transforming growth factor beta superfamily of cytokines. It is a secreted protein that performs many cellular functions, including the control of cell growth, cell proliferation, cell differentiation, and apoptosis. In humans, TGF-β1 is encoded by the TGFB1 gene.[5][6]

Function

TGF-β is a multifunctional set of peptides that controls proliferation, differentiation, and other functions in many cell types. TGF-β acts synergistically with transforming growth factor-alpha (TGF-α) in inducing transformation. It also acts as a negative autocrine growth factor. Dysregulation of TGF-β activation and signaling may result in apoptosis. Many cells synthesize TGF-β and almost all of them have specific receptors for this peptide. TGF-β1, TGF-β2, and TGF-β3 all function through the same receptor signaling systems.[7]

TGF-β1 was first identified in human platelets as a protein with a molecular mass of 25 kilodaltons with a potential role in wound healing.[8][9] It was later characterized as a large protein precursor (containing 390 amino acids) that was proteolytically processed to produce a mature peptide of 112 amino acids.[10]

TGF-β1 plays an important role in controlling the immune system, and shows different activities on different types of cell, or cells at different developmental stages. Most immune cells (or leukocytes) secrete TGF-β1.[11]

T cells

Some T cells (e.g. regulatory T cells) release TGF-β1 to inhibit the actions of other T cells. Specifically, TGF-β1 prevents the interleukin(IL)-1- & interleukin-2-dependent proliferation in activated T cells,[12][13] as well as the activation of quiescent helper T cells and cytotoxic T cells.[14][15] Similarly, TGF-β1 can inhibit the secretion and activity of many other cytokines including interferon-γ, tumor necrosis factor-alpha (TNF-α), and various interleukins. It can also decrease the expression levels of cytokine receptors, such as the IL-2 receptor to down-regulate the activity of immune cells. However, TGF-β1 can also increase the expression of certain cytokines in T cells and promote their proliferation,[16] particularly if the cells are immature.[11]

B cells

TGF-β1 has similar effects on B cells that also vary according to the differentiation state of the cell. It inhibits proliferation, stimulates apoptosis of B cells,[17] and controls the expression of antibody, transferrin and MHC class II proteins on immature and mature B cells.[11][17]

Myeloid cells

The effects of TGF-β1 on macrophages and monocytes are predominantly suppressive; this cytokine can inhibit the proliferation of these cells and prevent their production of reactive oxygen (e.g. superoxide (O2)) and nitrogen (e.g. nitric oxide (NO)) intermediates. However, as with other cell types, TGF-β1 can also have the opposite effect on cells of myeloid origin. For example, TGF-β1 acts as a chemoattractant, directing an immune response to certain pathogens. Likewise, macrophages and monocytes respond to low levels of TGF-β1 in a chemotactic manner. Furthermore, the expression of monocytic cytokines (such as interleukin(IL)-1α, IL-1β, and TNF-α),[15] and macrophage's phagocytic can be increased by the action of TGF-β1.[11]

TGF-β1 reduces the efficacy of the MHC II in astrocytes and dendritic cells, which in turn decreases the activation of appropriate helper T cell populations.[18][19]

Interactions

TGF beta 1 has been shown to interact with:

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000105329 - Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000002603 - Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Ghadami M, Makita Y, Yoshida K, Nishimura G, Fukushima Y, Wakui K, Ikegawa S, Yamada K, Kondo S, Niikawa N, Tomita Ha (January 2000). "Genetic mapping of the Camurati-Engelmann disease locus to chromosome 19q13.1-q13.3". Am. J. Hum. Genet. 66 (1): 143–7. doi:10.1086/302728. PMC 1288319. PMID 10631145.
  6. ^ Vaughn SP, Broussard S, Hall CR, Scott A, Blanton SH, Milunsky JM, Hecht JT (May 2000). "Confirmation of the mapping of the Camurati-Englemann locus to 19q13. 2 and refinement to a 3.2-cM region". Genomics. 66 (1): 119–21. doi:10.1006/geno.2000.6192. PMID 10843814.
  7. ^ "Entrez Gene: TGFB1 transforming growth factor, beta 1".
  8. ^ Assoian RK, Komoriya A, Meyers CA, Miller DM, Sporn MB (1983). "Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization". J. Biol. Chem. 258 (11): 7155–60. doi:10.1016/S0021-9258(18)32345-7. PMID 6602130.
  9. ^ Custo, S; Baron, B; Felice, A; Seria, E (5 July 2022). "A comparative profile of total protein and six angiogenically-active growth factors in three platelet products". GMS Interdisciplinary Plastic and Reconstructive Surgery DGPW. 11 (Doc06): Doc06. doi:10.3205/iprs000167. PMC 9284722. PMID 35909816.
  10. ^ Derynck R, Jarrett JA, Chen EY, Eaton DH, Bell JR, Assoian RK, Roberts AB, Sporn MB, Goeddel DV (1985). "Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells". Nature. 316 (6030): 701–5. Bibcode:1985Natur.316..701D. doi:10.1038/316701a0. PMID 3861940. S2CID 4245501.
  11. ^ a b c d Letterio JJ, Roberts AB (1998). "Regulation of immune responses by TGF-beta". Annu. Rev. Immunol. 16: 137–61. doi:10.1146/annurev.immunol.16.1.137. PMID 9597127.
  12. ^ Wahl SM, Hunt DA, Wong HL, Dougherty S, McCartney-Francis N, Wahl LM, Ellingsworth L, Schmidt JA, Hall G, Roberts AB (1988). "Transforming growth factor-beta is a potent immunosuppressive agent that inhibits IL-1-dependent lymphocyte proliferation". J. Immunol. 140 (9): 3026–32. doi:10.4049/jimmunol.140.9.3026. PMID 3129508. S2CID 35425214.
  13. ^ Tiemessen MM, Kunzmann S, Schmidt-Weber CB, Garssen J, Bruijnzeel-Koomen CA, Knol EF, van Hoffen E (2003). "Transforming growth factor-beta inhibits human antigen-specific CD4+ T cell proliferation without modulating the cytokine response". Int. Immunol. 15 (12): 1495–504. doi:10.1093/intimm/dxg147. PMID 14645158.
  14. ^ Gilbert KM, Thoman M, Bauche K, Pham T, Weigle WO (1997). "Transforming growth factor-beta 1 induces antigen-specific unresponsiveness in naive T cells". Immunol. Invest. 26 (4): 459–72. doi:10.3109/08820139709022702. PMID 9246566.
  15. ^ a b Wahl SM, Wen J, Moutsopoulos N (2006). "TGF-beta: a mobile purveyor of immune privilege". Immunol. Rev. 213: 213–27. doi:10.1111/j.1600-065X.2006.00437.x. PMID 16972906. S2CID 84309271.
  16. ^ Zhu H, Wang Z, Yu J, Yang X, He F, Liu Z, Che F, Chen X, Ren H, Hong M, Wang J (March 2019). "Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage". Prog. Neurobiol. 178: 101610. doi:10.1016/j.pneurobio.2019.03.003. PMID 30923023. S2CID 85495400.
  17. ^ a b Lebman DA, Edmiston JS (1999). "The role of TGF-beta in growth, differentiation, and maturation of B lymphocytes". Microbes Infect. 1 (15): 1297–304. doi:10.1016/S1286-4579(99)00254-3. PMID 10611758.
  18. ^ Rodríguez LS, Narváez CF, Rojas OL, Franco MA, Ángel J (2012-01-01). "Human myeloid dendritic cells treated with supernatants of rotavirus infected Caco-2 cells induce a poor Th1 response". Cellular Immunology. 272 (2): 154–61. doi:10.1016/j.cellimm.2011.10.017. PMID 22082567.
  19. ^ Dong Y, Tang L, Letterio JJ, Benveniste EN (July 2001). "The Smad3 protein is involved in TGF-beta inhibition of class II transactivator and class II MHC expression". Journal of Immunology. 167 (1): 311–9. doi:10.4049/jimmunol.167.1.311. PMID 11418665.
  20. ^ Hildebrand A, Romarís M, Rasmussen LM, Heinegård D, Twardzik DR, Border WA, Ruoslahti E (September 1994). "Interaction of the small interstitial proteoglycans biglycan, decorin and fibromodulin with transforming growth factor beta". Biochem. J. 302 (2): 527–34. doi:10.1042/bj3020527. PMC 1137259. PMID 8093006.
  21. ^ Schönherr E, Broszat M, Brandan E, Bruckner P, Kresse H (July 1998). "Decorin core protein fragment Leu155-Val260 interacts with TGF-beta but does not compete for decorin binding to type I collagen". Arch. Biochem. Biophys. 355 (2): 241–8. doi:10.1006/abbi.1998.0720. PMID 9675033.
  22. ^ Takeuchi Y, Kodama Y, Matsumoto T (Dec 1994). "Bone matrix decorin binds transforming growth factor-beta and enhances its bioactivity". J. Biol. Chem. 269 (51): 32634–8. doi:10.1016/S0021-9258(18)31681-8. PMID 7798269.
  23. ^ Choy L, Derynck R (November 1998). "The type II transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts as a modulator of the TGF-beta response". J. Biol. Chem. 273 (47): 31455–62. doi:10.1074/jbc.273.47.31455. PMID 9813058.
  24. ^ Saharinen J, Keski-Oja J (August 2000). "Specific sequence motif of 8-Cys repeats of TGF-beta binding proteins, LTBPs, creates a hydrophobic interaction surface for binding of small latent TGF-beta". Mol. Biol. Cell. 11 (8): 2691–704. doi:10.1091/mbc.11.8.2691. PMC 14949. PMID 10930463.
  25. ^ Ebner R, Chen RH, Lawler S, Zioncheck T, Derynck R (November 1993). "Determination of type I receptor specificity by the type II receptors for TGF-beta or activin". Science. 262 (5135): 900–2. Bibcode:1993Sci...262..900E. doi:10.1126/science.8235612. PMID 8235612.
  26. ^ Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (March 2000). "Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis". Proc. Natl. Acad. Sci. U.S.A. 97 (6): 2626–31. Bibcode:2000PNAS...97.2626O. doi:10.1073/pnas.97.6.2626. PMC 15979. PMID 10716993.
  27. ^ McGonigle S, Beall MJ, Feeney EL, Pearce EJ (February 2001). "Conserved role for 14-3-3epsilon downstream of type I TGFbeta receptors". FEBS Lett. 490 (1–2): 65–9. doi:10.1016/s0014-5793(01)02133-0. PMID 11172812. S2CID 84710903.

Further reading

  • Border WA, Noble NA (1994). "Transforming growth factor beta in tissue fibrosis". N. Engl. J. Med. 331 (19): 1286–92. doi:10.1056/NEJM199411103311907. PMID 7935686.
  • Munger JS, Harpel JG, Gleizes PE, Mazzieri R, Nunes I, Rifkin DB (1997). "Latent transforming growth factor-beta: structural features and mechanisms of activation". Kidney Int. 51 (5): 1376–82. doi:10.1038/ki.1997.188. PMID 9150447.
  • Iozzo RV (1999). "The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins". J. Biol. Chem. 274 (27): 18843–6. doi:10.1074/jbc.274.27.18843. PMID 10383378.
  • Reinhold D, Wrenger S, Kähne T, Ansorge S (1999). "HIV-1 Tat: immunosuppression via TGF-beta1 induction". Immunol. Today. 20 (8): 384–5. doi:10.1016/S0167-5699(99)01497-8. PMID 10431160.
  • Yamada Y (2001). "Association of polymorphisms of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis". Pharmacogenetics. 11 (9): 765–71. doi:10.1097/00008571-200112000-00004. PMID 11740340.
  • Chen W, Wahl SM (2002). "TGF-β: Receptors, Signaling Pathways and Autoimmunity". TGF-beta: receptors, signaling pathways and autoimmunity. Current Directions in Autoimmunity. Vol. 5. pp. 62–91. doi:10.1159/000060548. ISBN 978-3-8055-7308-5. PMID 11826761. {{cite book}}: |journal= ignored (help)
  • Marone M, Bonanno G, Rutella S, Leone G, Scambia G, Pierelli L (2002). "Survival and cell cycle control in early hematopoiesis: role of bcl-2, and the cyclin dependent kinase inhibitors P27 and P21". Leuk. Lymphoma. 43 (1): 51–7. doi:10.1080/10428190210195. PMID 11908736. S2CID 28490341.
  • Schnaper HW, Hayashida T, Hubchak SC, Poncelet AC (2003). "TGF-beta signal transduction and mesangial cell fibrogenesis". Am. J. Physiol. Renal Physiol. 284 (2): F243–52. doi:10.1152/ajprenal.00300.2002. PMID 12529270. S2CID 17046094.
  • Kalluri R, Neilson EG (2003). "Epithelial-mesenchymal transition and its implications for fibrosis". J. Clin. Invest. 112 (12): 1776–84. doi:10.1172/JCI20530. PMC 297008. PMID 14679171.
  • Grainger DJ (2004). "Transforming growth factor beta and atherosclerosis: so far, so good for the protective cytokine hypothesis". Arterioscler. Thromb. Vasc. Biol. 24 (3): 399–404. doi:10.1161/01.ATV.0000114567.76772.33. PMID 14699019.
  • Attisano L, Labbé E (2004). "TGFbeta and Wnt pathway cross-talk". Cancer Metastasis Rev. 23 (1–2): 53–61. doi:10.1023/A:1025811012690. PMID 15000149. S2CID 41685620.
  • McGowan TA, Zhu Y, Sharma K (2004). "Transforming growth factor-beta: a clinical target for the treatment of diabetic nephropathy". Curr. Diab. Rep. 4 (6): 447–54. doi:10.1007/s11892-004-0055-z. PMID 15539010. S2CID 45122439.
  • Sheppard D (2005). "Integrin-mediated activation of latent transforming growth factor beta". Cancer Metastasis Rev. 24 (3): 395–402. doi:10.1007/s10555-005-5131-6. PMID 16258727. S2CID 1929903.
  • Gressner AM, Weiskirchen R (2006). "Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-beta as major players and therapeutic targets". J. Cell. Mol. Med. 10 (1): 76–99. doi:10.1111/j.1582-4934.2006.tb00292.x. PMC 3933103. PMID 16563223.
  • Seoane J (2006). "Escaping from the TGFbeta anti-proliferative control". Carcinogenesis. 27 (11): 2148–56. doi:10.1093/carcin/bgl068. PMID 16698802.
  • Lee CG, Kang HR, Homer RJ, Chupp G, Elias JA (2006). "Transgenic modeling of transforming growth factor-beta(1): role of apoptosis in fibrosis and alveolar remodeling". Proc Am Thorac Soc. 3 (5): 418–23. doi:10.1513/pats.200602-017AW. PMC 2658706. PMID 16799085.
  • Wahl SM (2007). "Transforming growth factor-beta: innately bipolar". Curr. Opin. Immunol. 19 (1): 55–62. doi:10.1016/j.coi.2006.11.008. PMID 17137775.
  • Redondo S, Santos-Gallego CG, Tejerina T (2007). "TGF-beta1: a novel target for cardiovascular pharmacology". Cytokine Growth Factor Rev. 18 (3–4): 279–86. doi:10.1016/j.cytogfr.2007.04.005. PMID 17485238.
  • Ren H, Han R, Chen X, Liu X, Wan J, Wang L, Yang X, Wang J (May 2020). "Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: An update". J Cereb Blood Flow Metab. 40 (9): 1752–1768. doi:10.1177/0271678X20923551. PMC 7446569. PMID 32423330. S2CID 218689863.

External links

  • Overview of all the structural information available in the PDB for UniProt: P01137 (Transforming growth factor beta-1) at the PDBe-KB.


  • v
  • t
  • e
  • 1kla: SOLUTION STRUCTURE OF TGF-B1, NMR, MODELS 1-17 OF 33 STRUCTURES
    1kla: SOLUTION STRUCTURE OF TGF-B1, NMR, MODELS 1-17 OF 33 STRUCTURES
  • 1klc: SOLUTION STRUCTURE OF TGF-B1, NMR, MINIMIZED AVERAGE STRUCTURE
    1klc: SOLUTION STRUCTURE OF TGF-B1, NMR, MINIMIZED AVERAGE STRUCTURE
  • 1kld: SOLUTION STRUCTURE OF TGF-B1, NMR, MODELS 18-33 OF 33 STRUCTURES
    1kld: SOLUTION STRUCTURE OF TGF-B1, NMR, MODELS 18-33 OF 33 STRUCTURES
  • v
  • t
  • e
TGF beta superfamily of ligands
Ligand of ACVR or TGFBR
Ligand of BMPR
TGF beta receptors
(Activin, BMP, family)
TGFBR1:
TGFBR2:
TGFBR3:
Transducers/SMAD
Ligand inhibitors
Coreceptors
Other
  • v
  • t
  • e
TGFβ receptor superfamily modulators
Type I
ALK1 (ACVRL1)
  • Kinase inhibitors: K-02288
  • ML-347 (LDN-193719, VU0469381)
  • Other inhibitors: Disitertide
ALK2 (ACVR1A)
  • Kinase inhibitors: DMH-1
  • DMH-2
  • Dorsomorphin (BML-275)
  • K-02288
  • ML-347 (LDN-193719, VU0469381)
ALK3 (BMPR1A)
  • Kinase inhibitors: DMH-2
  • Dorsomorphin (BML-275)
  • K-02288
ALK4 (ACVR1B)
  • Kinase inhibitors: A 83-01
  • SB-431542
  • SB-505124
ALK5 (TGFβR1)
ALK6 (BMPR1B)
  • Kinase inhibitors: DMH-2
  • Dorsomorphin (BML-275)
  • K-02288
ALK7 (ACVR1C)
  • Antagonists: Lefty (1, 2)
  • Kinase inhibitors: A 83-01
  • SB-431542
  • SB-505124
Type II
TGFβR2
  • Kinase inhibitors: DMH-2
  • LY-364947
BMPR2
ACVR2A (ACVR2)
ACVR2B
  • Decoy receptors: Ramatercept
AMHR2 (AMHR)
Type III
TGFβR3 (β-glycan)
Unsorted