Solar eclipse of May 9, 1948

20th-century annular solar eclipse
39°48′N 131°12′E / 39.8°N 131.2°E / 39.8; 131.2Times (UTC)Greatest eclipse2:26:04ReferencesSaros137 (32 of 70)Catalog # (SE5000)9394

An annular solar eclipse occurred on May 9, 1948. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Car Nicobar, the northernmost of the Nicobar Islands, and Burma, Thailand including Bangkok, French Indochina (the part now belonging to Laos), North Vietnam (now belonging to Vietnam), China, South Korea, Rebun Island in Japan, Kuril Islands in the Soviet Union (now belonging to Russia) on May 9, and Alaska on May 8. It was the first central solar eclipse visible from Bangkok from 1948 to 1958, where it is rare for a large city to witness 4 central solar eclipses in 10 years. The moon's apparent diameter was only 0.006% smaller than the Sun's, so this was an annular solar eclipse that occurred on May 9, 1948. Occurring 7.1 days after apogee (Apogee on May 2, 1948) and 6.6 days before perigee (Perigee on May 15, 1948), the Moon's apparent diameter was near the average diameter.

The path width of the large annular solar eclipse of May 9, 1948, was about 200 meters and lasted only 0.3 seconds. A large annular eclipse covered over 99% of the Sun, creating a dramatic spectacle for observers in only an extremely narrow strip; however, it was fleeting, lasting just moments at the point of maximum eclipse.

Related eclipses

Solar eclipses 1946–1949

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Solar eclipse series sets from 1946–1949
Ascending node   Descending node
117 1946 May 30

Partial
122 1946 November 23

Partial
127 1947 May 20

Total
132 1947 November 12

Annular
137 1948 May 9

Annular
142 1948 November 1

Total
147 1949 April 28

Partial
152 1949 October 21

Partial

Saros 137

It is a part of Saros cycle 137, repeating every 18 years, 11 days, containing 70 events. The series started with partial solar eclipse on May 25, 1389. It contains total eclipses from August 20, 1533, through December 6, 1695, first set of hybrid eclipses from December 17, 1713, through February 11, 1804, first set of annular eclipses from February 21, 1822, through March 25, 1876, second set of hybrid eclipses from April 6, 1894, through April 28, 1930, and second set of annular eclipses from May 9, 1948, through April 13, 2507. The series ends at member 70 as a partial eclipse on June 28, 2633. The longest duration of totality was 2 minutes, 55 seconds on September 10, 1569. Solar Saros 137 has 55 umbral eclipses from August 20, 1533, through April 13, 2507 (973.62 years).

Series members 30–40 occur between 1901 and 2100:
30 31 32

April 17, 1912

April 28, 1930

May 9, 1948
33 34 35

May 20, 1966

May 30, 1984

June 10, 2002
36 37 38

June 21, 2020

July 2, 2038

July 12, 2056
39 40

July 24, 2074

August 3, 2092

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Inex series members between 1901 and 2100:

May 29, 1919
(Saros 136)

May 9, 1948
(Saros 137)

April 18, 1977
(Saros 138)

March 29, 2006
(Saros 139)

March 9, 2035
(Saros 140)

February 17, 2064
(Saros 141)

January 27, 2093
(Saros 142)

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1901 and 2100

September 9, 1904
(Saros 133)

August 10, 1915
(Saros 134)

July 9, 1926
(Saros 135)

June 8, 1937
(Saros 136)

May 9, 1948
(Saros 137)

April 8, 1959
(Saros 138)

March 7, 1970
(Saros 139)

February 4, 1981
(Saros 140)

January 4, 1992
(Saros 141)

December 4, 2002
(Saros 142)

November 3, 2013
(Saros 143)

October 2, 2024
(Saros 144)

September 2, 2035
(Saros 145)

August 2, 2046
(Saros 146)

July 1, 2057
(Saros 147)

May 31, 2068
(Saros 148)

May 1, 2079
(Saros 149)

March 31, 2090
(Saros 150)

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days).

22 eclipse events between December 13, 1898, and July 20, 1982
December 13–14 October 1–2 July 20–21 May 9 February 24–25
111 113 115 117 119

December 13, 1898

July 21, 1906

May 9, 1910

February 25, 1914
121 123 125 127 129

December 14, 1917

October 1, 1921

July 20, 1925

May 9, 1929

February 24, 1933
131 133 135 137 139

December 13, 1936

October 1, 1940

July 20, 1944

May 9, 1948

February 25, 1952
141 143 145 147 149

December 14, 1955

October 2, 1959

July 20, 1963

May 9, 1967

February 25, 1971
151 153 155

December 13, 1974

October 2, 1978

July 20, 1982

Notes

  1. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.

References

  • Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC
    • Google interactive map
    • Besselian elements
  • v
  • t
  • e
Lists of eclipses
By era
Saros series (list)
Visibility
Historical
21 August 2017 total solar eclipse
Total/hybrid eclipses
next total/hybrid
10 May 2013 annular eclipse
Annular eclipses
next annular
23 October 2014 partial eclipse
Partial eclipses
next partial
Other bodiesRelated
  •  Astronomy portal
  •  Solar System portal
  • Category
Stub icon

This solar eclipse–related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e