Helium analyzer

Instrument to measure the concentration of helium in a gas mixture
Analysing a trimix blend using a portable helium analyzer
Principle of the thermal conductivity gas analyzer
Continuous flow oxygen and helium analyser monitoring blended breathing gas for diving

A Helium analyzer is an instrument used to identify the presence and concentration of helium in a mixture of gases. In Technical diving where breathing gas mixtures known as Trimix comprising oxygen, helium and nitrogen are used, it is necessary to know the fraction of helium in the mixture to reliably calculate decompression schedules for dives using that mixture.

Thermal conductivity principle

Portable instruments for the analysis of helium content of breathing gas mixtures may be based on a thermal conductivity sensor (katharometer). These sensors can be very stable and maintenance free and also highly reliable and accurate.[1]

A typical thermal helium analyser comprises two chambers, each with an identical thermal conductivity sensor. One chamber is sealed and is filled with pure helium as the reference gas, and the other receives the sample gas. The difference in thermal conductivity of the reference and sample gases is measured and converted into a concentration value by the electronic circuitry in the instrument. The system is inherently stable and when precise temperature compensation is made, the system is more than adequately accurate for breathing gas analysis. Accuracy and display precision is typically within 0.1%, and accuracy within 1% is considered sufficient for most decompression algorithms.[1]

The thermal conductivity of nitrogen and oxygen are very similar, and that of helium very different so that the ratio of oxygen and nitrogen in the mix is relatively unimportant, and need not be compensated. This allows a direct reading of helium fraction from these instruments. However, for greater accuracy and compensation to oxygen cross-sensitivity, some instruments include an oxygen cell, and in these cases can generally give a full helium and oxygen analysis of the mixture simultaneously.[2]

Trimix gas analyser showing oxygen and helium partial pressures

Speed of sound principle

Helium content may also be determined on the basis of measuring the speed of sound in the analyzed gas mixture.[3] The speed of sound depends on the mixture of gases and the temperature of the mix; in the analysis of trimix the speed of sound can be described by a non-linear function of temperature, oxygen content and helium content, and thus the content of helium can be determined by measuring the speed of sound through the mix, the temperature of the mix and its oxygen content.

See also

References

  1. ^ a b Thermal Conductivity Sensors
  2. ^ ANALOX 8000 – Helium Analyse User Manual, Analox Sensor Technology Ltd, 15 Ellerbeck Court, Stokesley Business Park, North Yorkshire, TS9 5PT, "Archived copy" (PDF). Archived from the original (PDF) on 2012-04-25. Retrieved 2011-11-06.{{cite web}}: CS1 maint: archived copy as title (link)
  3. ^ "He/O2 analyzer manual" (PDF). Divesoft. 2012-07-01. Retrieved 2018-07-08.

External links

  • Media related to Helium analyzer at Wikimedia Commons
  • v
  • t
  • e
Underwater diving
Basic equipment
Breathing gas
Buoyancy and
trim equipment
Decompression
equipment
Diving suit
Helmets
and masks
Instrumentation
Mobility
equipment
Safety
equipment
Underwater
breathing
apparatus
Open-circuit
scuba
Diving rebreathers
Surface-supplied
diving equipment
Diving
equipment
manufacturers
Access equipment
Breathing gas
handling
Decompression
equipment
Platforms
Underwater
habitat
Remotely operated
underwater vehicles
Safety equipment
General
Activities
Competitions
Equipment
Freedivers
Hazards
Historical
Organisations
Occupations
Military
diving
Military
diving
units
Underwater
work
Salvage diving
  • SS Egypt
  • Kronan
  • La Belle
  • SS Laurentic
  • RMS Lusitania
  • Mars
  • Mary Rose
  • USS Monitor
  • HMS Royal George
  • Vasa
Diving
contractors
Tools and
equipment
Underwater
weapons
Underwater
firearm
Specialties
Diver
organisations
Diving tourism
industry
Diving events
and festivals
Diving
hazards
Consequences
Diving
procedures
Risk
management
Diving team
Equipment
safety
Occupational
safety and
health
Diving
disorders
Pressure
related
Oxygen
Inert gases
Carbon dioxide
Breathing gas
contaminants
Immersion
related
Treatment
Personnel
Screening
Research
Researchers in
diving physiology
and medicine
Diving medical
research
organisations
Law
Archeological
sites
Underwater art
and artists
Engineers
and inventors
Historical
equipment
Diver
propulsion
vehicles
Military and
covert operations
  • Raid on Alexandria (1941)
  • Sinking of the Rainbow Warrior
Scientific projects
Awards and events
Incidents
Dive boat incidents
  • Sinking of MV Conception
Diver rescues
Early diving
Freediving fatalities
Offshore
diving incidents
  • Byford Dolphin diving bell accident
  • Drill Master diving accident
  • Star Canopus diving accident
  • Stena Seaspread diving accident
  • Venture One diving accident
  • Waage Drill II diving accident
  • Wildrake diving accident
Professional
diving fatalities
Scuba diving
fatalities
Publications
Manuals
  • NOAA Diving Manual
  • U.S. Navy Diving Manual
  • Basic Cave Diving: A Blueprint for Survival
  • Underwater Handbook
  • Bennett and Elliott's physiology and medicine of diving
  • Encyclopedia of Recreational Diving
  • The new science of skin and scuba diving
  • Professional Diver's Handbook
  • Basic Scuba
Standards and
Codes of Practice
General non-fiction
Research
Dive guides
Training and registration
Diver
training
Skills
Recreational
scuba
certification
levels
Core diving skills
Leadership skills
Specialist skills
Diver training
certification
and registration
organisations
Commercial diver
certification
authorities
Commercial diving
schools
Free-diving
certification
agencies
Recreational
scuba
certification
agencies
Scientific diver
certification
authorities
Technical diver
certification
agencies
Cave
diving
Military diver
training centres
Military diver
training courses
Surface snorkeling
Snorkeling/breath-hold
Breath-hold
Open Circuit Scuba
Rebreather
  • Underwater photography
Sports governing
organisations
and federations
Competitions
Pioneers
of diving
Underwater
scientists
archaeologists and
environmentalists
Scuba record
holders
Underwater
filmmakers
and presenters
Underwater
photographers
Underwater
explorers
Aquanauts
Writers and journalists
Rescuers
Frogmen
Commercial salvors
Diving
physics
Diving
physiology
Decompression
theory
Diving
environment
Classification
Impact
Other
Deep-submergence
vehicle
  • Aluminaut
  • DSV Alvin
  • American submarine NR-1
  • Bathyscaphe
    • Archimède
    • FNRS-2
    • FNRS-3
    • Harmony class bathyscaphe
    • Sea Pole-class bathyscaphe
    • Trieste II
  • Deepsea Challenger
  • Ictineu 3
  • JAGO
  • Jiaolong
  • Konsul-class submersible
  • Limiting Factor
  • Russian submarine Losharik
  • Mir
  • Nautile
  • Pisces-class deep submergence vehicle
  • DSV Sea Cliff
  • DSV Shinkai
  • DSV Shinkai 2000
  • DSV Shinkai 6500
  • DSV Turtle
  • DSV-5 Nemo
Submarine rescue
Deep-submergence
rescue vehicle
Submarine escape
Escape set
Special
interest
groups
Neutral buoyancy
facilities for
Astronaut training
Other