Matrix-exponential distribution

Absolutely continuous distribution with rational Laplace–Stieltjes transform
Matrix-exponential
Parameters α, T, s
Support x ∈ [0, ∞)
PDF α ex Ts
CDF 1 + αexTT−1s

In probability theory, the matrix-exponential distribution is an absolutely continuous distribution with rational Laplace–Stieltjes transform.[1] They were first introduced by David Cox in 1955 as distributions with rational Laplace–Stieltjes transforms.[2]

The probability density function is f ( x ) = α e x T s  for  x 0 {\displaystyle f(x)=\mathbf {\alpha } e^{x\,T}\mathbf {s} {\text{ for }}x\geq 0} (and 0 when x < 0), and the cumulative distribution function is F ( t ) = 1 α e A t 1 {\displaystyle F(t)=1-\alpha e^{{\textbf {A}}t}{\textbf {1}}} [3] where 1 is a vector of 1s and

α R 1 × n , T R n × n , s R n × 1 . {\displaystyle {\begin{aligned}\alpha &\in \mathbb {R} ^{1\times n},\\T&\in \mathbb {R} ^{n\times n},\\s&\in \mathbb {R} ^{n\times 1}.\end{aligned}}}

There are no restrictions on the parameters α, T, s other than that they correspond to a probability distribution.[4] There is no straightforward way to ascertain if a particular set of parameters form such a distribution.[2] The dimension of the matrix T is the order of the matrix-exponential representation.[1]

The distribution is a generalisation of the phase-type distribution.

Moments

If X has a matrix-exponential distribution then the kth moment is given by[2]

E ( X k ) = ( 1 ) k + 1 k ! α T ( k + 1 ) s . {\displaystyle \operatorname {E} (X^{k})=(-1)^{k+1}k!\mathbf {\alpha } T^{-(k+1)}\mathbf {s} .}

Fitting

Matrix exponential distributions can be fitted using maximum likelihood estimation.[5]

Software

  • BuTools a MATLAB and Mathematica script for fitting matrix-exponential distributions to three specified moments.

See also

  • Rational arrival process

References

  1. ^ a b Asmussen, S. R.; o’Cinneide, C. A. (2006). "Matrix-Exponential Distributions". Encyclopedia of Statistical Sciences. doi:10.1002/0471667196.ess1092.pub2. ISBN 0471667196.
  2. ^ a b c Bean, N. G.; Fackrell, M.; Taylor, P. (2008). "Characterization of Matrix-Exponential Distributions". Stochastic Models. 24 (3): 339. doi:10.1080/15326340802232186.
  3. ^ "Tools for Phase-Type Distributions (butools.ph) — butools 2.0 documentation". webspn.hit.bme.hu. Retrieved 2022-04-16.
  4. ^ He, Q. M.; Zhang, H. (2007). "On matrix exponential distributions". Advances in Applied Probability. 39. Applied Probability Trust: 271–292. doi:10.1239/aap/1175266478.
  5. ^ Fackrell, M. (2005). "Fitting with Matrix-Exponential Distributions". Stochastic Models. 21 (2–3): 377. doi:10.1081/STM-200056227.
  • v
  • t
  • e
Probability distributions (list)
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons


Stub icon

This probability-related article is a stub. You can help Wikipedia by expanding it.

  • v
  • t
  • e