Benini distribution

Benini
Parameters α > 0 {\displaystyle \alpha >0} shape (real)
β > 0 {\displaystyle \beta >0} shape (real)
σ > 0 {\displaystyle \sigma >0} scale (real)
Support x > σ {\displaystyle x>\sigma }
PDF e α log x σ β [ log x σ ] 2 ( α x + 2 β log x σ x ) {\displaystyle e^{-\alpha \log {\frac {x}{\sigma }}-\beta \left[\log {\frac {x}{\sigma }}\right]^{2}}\left({\frac {\alpha }{x}}+{\frac {2\beta \log {\frac {x}{\sigma }}}{x}}\right)}
CDF 1 e α log x σ β [ log x σ ] 2 {\displaystyle 1-e^{-\alpha \log {\frac {x}{\sigma }}-\beta [\log {\frac {x}{\sigma }}]^{2}}}
Mean σ + σ 2 β H 1 ( 1 + α 2 β ) {\displaystyle \sigma +{\tfrac {\sigma }{\sqrt {2\beta }}}H_{-1}\left({\tfrac {-1+\alpha }{\sqrt {2\beta }}}\right)}
where H n ( x ) {\displaystyle H_{n}(x)} is the "probabilists' Hermite polynomials"
Median σ ( e α + α 2 + β log 16 2 β ) {\displaystyle \sigma \left(e^{\frac {-\alpha +{\sqrt {\alpha ^{2}+\beta \log {16}}}}{2\beta }}\right)}
Variance ( σ 2 + 2 σ 2 2 β H 1 ( 2 + α 2 β ) ) μ 2 {\displaystyle \left(\sigma ^{2}+{\tfrac {2\sigma ^{2}}{\sqrt {2\beta }}}H_{-1}\left({\tfrac {-2+\alpha }{\sqrt {2\beta }}}\right)\right)-\mu ^{2}}

In probability, statistics, economics, and actuarial science, the Benini distribution is a continuous probability distribution that is a statistical size distribution often applied to model incomes, severity of claims or losses in actuarial applications, and other economic data.[1][2] Its tail behavior decays faster than a power law, but not as fast as an exponential. This distribution was introduced by Rodolfo Benini in 1905.[3] Somewhat later than Benini's original work, the distribution has been independently discovered or discussed by a number of authors.[4]

Distribution

The Benini distribution Benini ( α , β , σ ) {\displaystyle \operatorname {Benini} (\alpha ,\beta ,\sigma )} is a three-parameter distribution, which has cumulative distribution function (CDF)

F ( x ) = 1 exp { α ( log x log σ ) β ( log x log σ ) 2 } = 1 ( x σ ) α β log ( x σ ) , {\displaystyle F(x)=1-\exp {\big \{}-\alpha (\log x-\log \sigma )-\beta (\log x-\log \sigma )^{2}{\big \}}=1-\left({\frac {x}{\sigma }}\right)^{-\alpha -\beta \log {\left({\frac {x}{\sigma }}\right)}},}

where x σ {\displaystyle x\geq \sigma } , shape parameters α, β > 0, and σ > 0 is a scale parameter.

For parsimony, Benini[3] considered only the two-parameter model (with α = 0), with CDF

F ( x ) = 1 exp { β ( log x log σ ) 2 } = 1 ( x σ ) β ( log x log σ ) . {\displaystyle F(x)=1-\exp {\big \{}-\beta (\log x-\log \sigma )^{2}{\big \}}=1-\left({\frac {x}{\sigma }}\right)^{-\beta (\log x-\log \sigma )}.}

The density of the two-parameter Benini model is

f ( x ) = 2 β x exp { β [ log ( x σ ) ] 2 } log ( x σ ) , x σ > 0. {\displaystyle f(x)={\frac {2\beta }{x}}\exp \left\{-\beta \left[\log \left({\frac {x}{\sigma }}\right)\right]^{2}\right\}\log \left({\frac {x}{\sigma }}\right),\quad x\geq \sigma >0.}

Simulation

A two-parameter Benini variable can be generated by the inverse probability transform method. For the two-parameter model, the quantile function (inverse CDF) is

F 1 ( u ) = σ exp 1 β log ( 1 u ) , 0 < u < 1. {\displaystyle F^{-1}(u)=\sigma \exp {\sqrt {-{\frac {1}{\beta }}\log(1-u)}},\quad 0<u<1.}

Related distributions

  • If X Benini ( α , 0 , σ ) {\displaystyle X\sim \operatorname {Benini} (\alpha ,0,\sigma )} , then X has a Pareto distribution with x m = σ . {\displaystyle x_{\text{m}}=\sigma .}
  • If X Benini ( 0 , 1 2 σ 2 , 1 ) {\displaystyle X\sim \operatorname {Benini} (0,{\tfrac {1}{2\sigma ^{2}}},1)} , then X e U {\displaystyle X\sim e^{U}} , where U Rayleigh ( σ ) . {\displaystyle U\sim \operatorname {Rayleigh} (\sigma ).}

Software

The two-parameter Benini distribution density, probability distribution, quantile function and random-number generator are implemented in the VGAM package for R, which also provides maximum-likelihood estimation of the shape parameter.[5]

See also

References

  1. ^ Kleiber, Christian; Kotz, Samuel (2003). "Chapter 7.1: Benini Distribution". Statistical Size Distributions in Economics and Actuarial Sciences. Wiley. ISBN 978-0-471-15064-0.
  2. ^ A. Sen and J. Silber (2001). Handbook of Income Inequality Measurement, Boston:Kluwer, Section 3: Personal Income Distribution Models.
  3. ^ a b Benini, R. (1905). I diagrammi a scala logaritmica (a proposito della graduazione per valore delle successioni ereditarie in Italia, Francia e Inghilterra). Giornale degli Economisti, Series II, 16, 222–231.
  4. ^ See the references in Kleiber and Kotz (2003), p. 236.
  5. ^ Thomas W. Yee (2010). "The VGAM Package for Categorical Data Analysis". Journal of Statistical Software. 32 (10): 1–34. Also see the VGAM reference manual. Archived 2013-09-23 at the Wayback Machine.

External links

  • Benini Distribution at Wolfram Mathematica (definition and plots of pdf)
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons
Portals:
  • icon Mathematics
  • icon Physics
  • icon Economics
  • icon Science