Reciprocal distribution

Statistical distribution
Reciprocal
Probability density function
Probability density function
Cumulative distribution function
Cumulative distribution function
Parameters 0 < a < b , a , b R {\displaystyle 0<a<b,a,b\in \mathbb {R} }
Support [ a , b ] {\displaystyle [a,b]}
PDF 1 x ln b a {\displaystyle {\frac {1}{x\ln {\frac {b}{a}}}}}
CDF ln x a ln b a {\displaystyle {\frac {\ln {\frac {x}{a}}}{\ln {\frac {b}{a}}}}}
Mean b a ln b a {\displaystyle {\frac {b-a}{\ln {\frac {b}{a}}}}}
Median a b {\displaystyle {\sqrt {ab}}}
Variance b 2 a 2 2 ln b a ( b a ln b a ) 2 {\displaystyle {\frac {b^{2}-a^{2}}{2\ln {\frac {b}{a}}}}-\left({\frac {b-a}{\ln {\frac {b}{a}}}}\right)^{2}}

In probability and statistics, the reciprocal distribution, also known as the log-uniform distribution, is a continuous probability distribution. It is characterised by its probability density function, within the support of the distribution, being proportional to the reciprocal of the variable.

The reciprocal distribution is an example of an inverse distribution, and the reciprocal (inverse) of a random variable with a reciprocal distribution itself has a reciprocal distribution.

Definition

The probability density function (pdf) of the reciprocal distribution is

f ( x ; a , b ) = 1 x [ ln ( b ) ln ( a ) ]  for  a x b  and  a > 0. {\displaystyle f(x;a,b)={\frac {1}{x[\ln(b)-\ln(a)]}}\quad {\text{ for }}a\leq x\leq b{\text{ and }}a>0.}

Here, a {\displaystyle a} and b {\displaystyle b} are the parameters of the distribution, which are the lower and upper bounds of the support, and ln {\displaystyle \ln } is the natural log. The cumulative distribution function is

F ( x ; a , b ) = ln ( x ) ln ( a ) ln ( b ) ln ( a )  for  a x b . {\displaystyle F(x;a,b)={\frac {\ln(x)-\ln(a)}{\ln(b)-\ln(a)}}\quad {\text{ for }}a\leq x\leq b.}

Characterization

Relationship between the log-uniform and the uniform distribution

Histogram and log-histogram of random deviates from the reciprocal distribution

A positive random variable X is log-uniformly distributed if the logarithm of X is uniform distributed,

ln ( X ) U ( ln ( a ) , ln ( b ) ) . {\displaystyle \ln(X)\sim {\mathcal {U}}(\ln(a),\ln(b)).}

This relationship is true regardless of the base of the logarithmic or exponential function. If log a ( Y ) {\displaystyle \log _{a}(Y)} is uniform distributed, then so is log b ( Y ) {\displaystyle \log _{b}(Y)} , for any two positive numbers a , b 1 {\displaystyle a,b\neq 1} . Likewise, if e X {\displaystyle e^{X}} is log-uniform distributed, then so is a X {\displaystyle a^{X}} , where 0 < a 1 {\displaystyle 0<a\neq 1} .

Applications

The reciprocal distribution is of considerable importance in numerical analysis, because a computer’s arithmetic operations transform mantissas with initial arbitrary distributions into the reciprocal distribution as a limiting distribution.[1]

References

  1. ^ Hamming R. W. (1970) "On the distribution of numbers", The Bell System Technical Journal 49(8) 1609–1625
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons