Lévy distribution

Probability distribution
Lévy (unshifted)
Probability density function
Levy distribution PDF
Cumulative distribution function
Levy distribution CDF
Parameters μ {\displaystyle \mu } location; c > 0 {\displaystyle c>0\,} scale
Support x ( μ , ) {\displaystyle x\in (\mu ,\infty )}
PDF c 2 π     e c 2 ( x μ ) ( x μ ) 3 / 2 {\displaystyle {\sqrt {\frac {c}{2\pi }}}~~{\frac {e^{-{\frac {c}{2(x-\mu )}}}}{(x-\mu )^{3/2}}}}
CDF erfc ( c 2 ( x μ ) ) {\displaystyle {\textrm {erfc}}\left({\sqrt {\frac {c}{2(x-\mu )}}}\right)}
Quantile μ + σ 2 ( erfc 1 ( p ) ) 2 {\displaystyle \mu +{\frac {\sigma }{2\left({\textrm {erfc}}^{-1}(p)\right)^{2}}}}
Mean {\displaystyle \infty }
Median μ + c / 2 ( erfc 1 ( 1 / 2 ) ) 2 {\displaystyle \mu +c/2({\textrm {erfc}}^{-1}(1/2))^{2}\,}
Mode μ + c 3 {\displaystyle \mu +{\frac {c}{3}}}
Variance {\displaystyle \infty }
Skewness undefined
Excess kurtosis undefined
Entropy

1 + 3 γ + ln ( 16 π c 2 ) 2 {\displaystyle {\frac {1+3\gamma +\ln(16\pi c^{2})}{2}}}

where γ {\displaystyle \gamma } is the Euler-Mascheroni constant
MGF undefined
CF e i μ t 2 i c t {\displaystyle e^{i\mu t-{\sqrt {-2ict}}}}

In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable. In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile.[note 1] It is a special case of the inverse-gamma distribution. It is a stable distribution.

Definition

The probability density function of the Lévy distribution over the domain x μ {\displaystyle x\geq \mu } is

f ( x ; μ , c ) = c 2 π e c 2 ( x μ ) ( x μ ) 3 / 2 , {\displaystyle f(x;\mu ,c)={\sqrt {\frac {c}{2\pi }}}\,{\frac {e^{-{\frac {c}{2(x-\mu )}}}}{(x-\mu )^{3/2}}},}

where μ {\displaystyle \mu } is the location parameter, and c {\displaystyle c} is the scale parameter. The cumulative distribution function is

F ( x ; μ , c ) = erfc ( c 2 ( x μ ) ) = 2 2 Φ ( c ( x μ ) ) , {\displaystyle F(x;\mu ,c)=\operatorname {erfc} \left({\sqrt {\frac {c}{2(x-\mu )}}}\right)=2-2\Phi \left({\sqrt {\frac {c}{(x-\mu )}}}\right),}

where erfc ( z ) {\displaystyle \operatorname {erfc} (z)} is the complementary error function, and Φ ( x ) {\displaystyle \Phi (x)} is the Laplace function (CDF of the standard normal distribution). The shift parameter μ {\displaystyle \mu } has the effect of shifting the curve to the right by an amount μ {\displaystyle \mu } and changing the support to the interval [ μ {\displaystyle \mu } {\displaystyle \infty } ). Like all stable distributions, the Lévy distribution has a standard form f(x; 0, 1) which has the following property:

f ( x ; μ , c ) d x = f ( y ; 0 , 1 ) d y , {\displaystyle f(x;\mu ,c)\,dx=f(y;0,1)\,dy,}

where y is defined as

y = x μ c . {\displaystyle y={\frac {x-\mu }{c}}.}

The characteristic function of the Lévy distribution is given by

φ ( t ; μ , c ) = e i μ t 2 i c t . {\displaystyle \varphi (t;\mu ,c)=e^{i\mu t-{\sqrt {-2ict}}}.}

Note that the characteristic function can also be written in the same form used for the stable distribution with α = 1 / 2 {\displaystyle \alpha =1/2} and β = 1 {\displaystyle \beta =1} :

φ ( t ; μ , c ) = e i μ t | c t | 1 / 2 ( 1 i sign ( t ) ) . {\displaystyle \varphi (t;\mu ,c)=e^{i\mu t-|ct|^{1/2}(1-i\operatorname {sign} (t))}.}

Assuming μ = 0 {\displaystyle \mu =0} , the nth moment of the unshifted Lévy distribution is formally defined by

m n   = def   c 2 π 0 e c / 2 x x n x 3 / 2 d x , {\displaystyle m_{n}\ {\stackrel {\text{def}}{=}}\ {\sqrt {\frac {c}{2\pi }}}\int _{0}^{\infty }{\frac {e^{-c/2x}x^{n}}{x^{3/2}}}\,dx,}

which diverges for all n 1 / 2 {\displaystyle n\geq 1/2} , so that the integer moments of the Lévy distribution do not exist (only some fractional moments).

The moment-generating function would be formally defined by

M ( t ; c )   = d e f   c 2 π 0 e c / 2 x + t x x 3 / 2 d x , {\displaystyle M(t;c)\ {\stackrel {\mathrm {def} }{=}}\ {\sqrt {\frac {c}{2\pi }}}\int _{0}^{\infty }{\frac {e^{-c/2x+tx}}{x^{3/2}}}\,dx,}

however, this diverges for t > 0 {\displaystyle t>0} and is therefore not defined on an interval around zero, so the moment-generating function is actually undefined.

Like all stable distributions except the normal distribution, the wing of the probability density function exhibits heavy tail behavior falling off according to a power law:

f ( x ; μ , c ) c 2 π 1 x 3 / 2 {\displaystyle f(x;\mu ,c)\sim {\sqrt {\frac {c}{2\pi }}}\,{\frac {1}{x^{3/2}}}} as x , {\displaystyle x\to \infty ,}

which shows that the Lévy distribution is not just heavy-tailed but also fat-tailed. This is illustrated in the diagram below, in which the probability density functions for various values of c and μ = 0 {\displaystyle \mu =0} are plotted on a log–log plot:

Probability density function for the Lévy distribution on a log–log plot

The standard Lévy distribution satisfies the condition of being stable:

( X 1 + X 2 + + X n ) n 1 / α X , {\displaystyle (X_{1}+X_{2}+\dotsb +X_{n})\sim n^{1/\alpha }X,}

where X 1 , X 2 , , X n , X {\displaystyle X_{1},X_{2},\ldots ,X_{n},X} are independent standard Lévy-variables with α = 1 / 2. {\displaystyle \alpha =1/2.}

Related distributions

  • If X Levy ( μ , c ) {\displaystyle X\sim \operatorname {Levy} (\mu ,c)} , then k X + b Levy ( k μ + b , k c ) . {\displaystyle kX+b\sim \operatorname {Levy} (k\mu +b,kc).}
  • If X Levy ( 0 , c ) {\displaystyle X\sim \operatorname {Levy} (0,c)} , then X I n v - G a m m a ( 1 / 2 , c / 2 ) {\displaystyle X\sim \operatorname {Inv-Gamma} (1/2,c/2)} (inverse gamma distribution). Here, the Lévy distribution is a special case of a Pearson type V distribution.
  • If Y Normal ( μ , σ 2 ) {\displaystyle Y\sim \operatorname {Normal} (\mu ,\sigma ^{2})} (normal distribution), then ( Y μ ) 2 Levy ( 0 , 1 / σ 2 ) . {\displaystyle (Y-\mu )^{-2}\sim \operatorname {Levy} (0,1/\sigma ^{2}).}
  • If X Normal ( μ , 1 / σ ) {\displaystyle X\sim \operatorname {Normal} (\mu ,1/{\sqrt {\sigma }})} , then ( X μ ) 2 Levy ( 0 , σ ) {\displaystyle (X-\mu )^{-2}\sim \operatorname {Levy} (0,\sigma )} .
  • If X Levy ( μ , c ) {\displaystyle X\sim \operatorname {Levy} (\mu ,c)} , then X Stable ( 1 / 2 , 1 , c , μ ) {\displaystyle X\sim \operatorname {Stable} (1/2,1,c,\mu )} (stable distribution).
  • If X Levy ( 0 , c ) {\displaystyle X\sim \operatorname {Levy} (0,c)} , then X S c a l e - i n v - χ 2 ( 1 , c ) {\displaystyle X\,\sim \,\operatorname {Scale-inv-\chi ^{2}} (1,c)} (scaled-inverse-chi-squared distribution).
  • If X Levy ( μ , c ) {\displaystyle X\sim \operatorname {Levy} (\mu ,c)} , then ( X μ ) 1 / 2 FoldedNormal ( 0 , 1 / c ) {\displaystyle (X-\mu )^{-1/2}\sim \operatorname {FoldedNormal} (0,1/{\sqrt {c}})} (folded normal distribution).

Random-sample generation

Random samples from the Lévy distribution can be generated using inverse transform sampling. Given a random variate U drawn from the uniform distribution on the unit interval (0, 1], the variate X given by[1]

X = F 1 ( U ) = c ( Φ 1 ( 1 U / 2 ) ) 2 + μ {\displaystyle X=F^{-1}(U)={\frac {c}{(\Phi ^{-1}(1-U/2))^{2}}}+\mu }

is Lévy-distributed with location μ {\displaystyle \mu } and scale c {\displaystyle c} . Here Φ ( x ) {\displaystyle \Phi (x)} is the cumulative distribution function of the standard normal distribution.

Applications

  • The frequency of geomagnetic reversals appears to follow a Lévy distribution
  • The time of hitting a single point, at distance α {\displaystyle \alpha } from the starting point, by the Brownian motion has the Lévy distribution with c = α 2 {\displaystyle c=\alpha ^{2}} . (For a Brownian motion with drift, this time may follow an inverse Gaussian distribution, which has the Lévy distribution as a limit.)
  • The length of the path followed by a photon in a turbid medium follows the Lévy distribution.[2]
  • A Cauchy process can be defined as a Brownian motion subordinated to a process associated with a Lévy distribution.[3]

Footnotes

  1. ^ "van der Waals profile" appears with lowercase "van" in almost all sources, such as: Statistical mechanics of the liquid surface by Clive Anthony Croxton, 1980, A Wiley-Interscience publication, ISBN 0-471-27663-4, ISBN 978-0-471-27663-0, [1]; and in Journal of technical physics, Volume 36, by Instytut Podstawowych Problemów Techniki (Polska Akademia Nauk), publisher: Państwowe Wydawn. Naukowe., 1995, [2]

Notes

  1. ^ "The Lévy Distribution". Random. Probability, Mathematical Statistics, Stochastic Processes. The University of Alabama in Huntsville, Department of Mathematical Sciences. Archived from the original on 2017-08-02.
  2. ^ Rogers, Geoffrey L. (2008). "Multiple path analysis of reflectance from turbid media". Journal of the Optical Society of America A. 25 (11): 2879–2883. Bibcode:2008JOSAA..25.2879R. doi:10.1364/josaa.25.002879. PMID 18978870.
  3. ^ Applebaum, D. "Lectures on Lévy processes and Stochastic calculus, Braunschweig; Lecture 2: Lévy processes" (PDF). University of Sheffield. pp. 37–53.

References

  • "Information on stable distributions". Retrieved September 5, 2021. - John P. Nolan's introduction to stable distributions, some papers on stable laws, and a free program to compute stable densities, cumulative distribution functions, quantiles, estimate parameters, etc. See especially An introduction to stable distributions, Chapter 1

External links

  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons