Generalized inverse Gaussian distribution

Family of continuous probability distributions
Generalized inverse Gaussian
Probability density function
Probability density plots of GIG distributions
Parameters a > 0, b > 0, p real
Support x > 0
PDF f ( x ) = ( a / b ) p / 2 2 K p ( a b ) x ( p 1 ) e ( a x + b / x ) / 2 {\displaystyle f(x)={\frac {(a/b)^{p/2}}{2K_{p}({\sqrt {ab}})}}x^{(p-1)}e^{-(ax+b/x)/2}}
Mean E [ x ] = b   K p + 1 ( a b ) a   K p ( a b ) {\displaystyle \operatorname {E} [x]={\frac {{\sqrt {b}}\ K_{p+1}({\sqrt {ab}})}{{\sqrt {a}}\ K_{p}({\sqrt {ab}})}}}
E [ x 1 ] = a   K p + 1 ( a b ) b   K p ( a b ) 2 p b {\displaystyle \operatorname {E} [x^{-1}]={\frac {{\sqrt {a}}\ K_{p+1}({\sqrt {ab}})}{{\sqrt {b}}\ K_{p}({\sqrt {ab}})}}-{\frac {2p}{b}}}
E [ ln x ] = ln b a + p ln K p ( a b ) {\displaystyle \operatorname {E} [\ln x]=\ln {\frac {\sqrt {b}}{\sqrt {a}}}+{\frac {\partial }{\partial p}}\ln K_{p}({\sqrt {ab}})}
Mode ( p 1 ) + ( p 1 ) 2 + a b a {\displaystyle {\frac {(p-1)+{\sqrt {(p-1)^{2}+ab}}}{a}}}
Variance ( b a ) [ K p + 2 ( a b ) K p ( a b ) ( K p + 1 ( a b ) K p ( a b ) ) 2 ] {\displaystyle \left({\frac {b}{a}}\right)\left[{\frac {K_{p+2}({\sqrt {ab}})}{K_{p}({\sqrt {ab}})}}-\left({\frac {K_{p+1}({\sqrt {ab}})}{K_{p}({\sqrt {ab}})}}\right)^{2}\right]}
MGF ( a a 2 t ) p 2 K p ( b ( a 2 t ) ) K p ( a b ) {\displaystyle \left({\frac {a}{a-2t}}\right)^{\frac {p}{2}}{\frac {K_{p}({\sqrt {b(a-2t)}})}{K_{p}({\sqrt {ab}})}}}
CF ( a a 2 i t ) p 2 K p ( b ( a 2 i t ) ) K p ( a b ) {\displaystyle \left({\frac {a}{a-2it}}\right)^{\frac {p}{2}}{\frac {K_{p}({\sqrt {b(a-2it)}})}{K_{p}({\sqrt {ab}})}}}

In probability theory and statistics, the generalized inverse Gaussian distribution (GIG) is a three-parameter family of continuous probability distributions with probability density function

f ( x ) = ( a / b ) p / 2 2 K p ( a b ) x ( p 1 ) e ( a x + b / x ) / 2 , x > 0 , {\displaystyle f(x)={\frac {(a/b)^{p/2}}{2K_{p}({\sqrt {ab}})}}x^{(p-1)}e^{-(ax+b/x)/2},\qquad x>0,}

where Kp is a modified Bessel function of the second kind, a > 0, b > 0 and p a real parameter. It is used extensively in geostatistics, statistical linguistics, finance, etc. This distribution was first proposed by Étienne Halphen.[1][2][3] It was rediscovered and popularised by Ole Barndorff-Nielsen, who called it the generalized inverse Gaussian distribution. Its statistical properties are discussed in Bent Jørgensen's lecture notes.[4]

Properties

Alternative parametrization

By setting θ = a b {\displaystyle \theta ={\sqrt {ab}}} and η = b / a {\displaystyle \eta ={\sqrt {b/a}}} , we can alternatively express the GIG distribution as

f ( x ) = 1 2 η K p ( θ ) ( x η ) p 1 e θ ( x / η + η / x ) / 2 , {\displaystyle f(x)={\frac {1}{2\eta K_{p}(\theta )}}\left({\frac {x}{\eta }}\right)^{p-1}e^{-\theta (x/\eta +\eta /x)/2},}

where θ {\displaystyle \theta } is the concentration parameter while η {\displaystyle \eta } is the scaling parameter.

Summation

Barndorff-Nielsen and Halgreen proved that the GIG distribution is infinitely divisible.[5]

Entropy

The entropy of the generalized inverse Gaussian distribution is given as[citation needed]

H = 1 2 log ( b a ) + log ( 2 K p ( a b ) ) ( p 1 ) [ d d ν K ν ( a b ) ] ν = p K p ( a b ) + a b 2 K p ( a b ) ( K p + 1 ( a b ) + K p 1 ( a b ) ) {\displaystyle {\begin{aligned}H={\frac {1}{2}}\log \left({\frac {b}{a}}\right)&{}+\log \left(2K_{p}\left({\sqrt {ab}}\right)\right)-(p-1){\frac {\left[{\frac {d}{d\nu }}K_{\nu }\left({\sqrt {ab}}\right)\right]_{\nu =p}}{K_{p}\left({\sqrt {ab}}\right)}}\\&{}+{\frac {\sqrt {ab}}{2K_{p}\left({\sqrt {ab}}\right)}}\left(K_{p+1}\left({\sqrt {ab}}\right)+K_{p-1}\left({\sqrt {ab}}\right)\right)\end{aligned}}}

where [ d d ν K ν ( a b ) ] ν = p {\displaystyle \left[{\frac {d}{d\nu }}K_{\nu }\left({\sqrt {ab}}\right)\right]_{\nu =p}} is a derivative of the modified Bessel function of the second kind with respect to the order ν {\displaystyle \nu } evaluated at ν = p {\displaystyle \nu =p}

Characteristic Function

The characteristic of a random variable X G I G ( p , a , b ) {\displaystyle X\sim GIG(p,a,b)} is given as(for a derivation of the characteristic function, see supplementary materials of [6] )

E ( e i t X ) = ( a a 2 i t ) p 2 K p ( ( a 2 i t ) b ) K p ( a b ) {\displaystyle E(e^{itX})=\left({\frac {a}{a-2it}}\right)^{\frac {p}{2}}{\frac {K_{p}\left({\sqrt {(a-2it)b}}\right)}{K_{p}\left({\sqrt {ab}}\right)}}}

for t R {\displaystyle t\in \mathbb {R} } where i {\displaystyle i} denotes the imaginary number.

Related distributions

Special cases

The inverse Gaussian and gamma distributions are special cases of the generalized inverse Gaussian distribution for p = −1/2 and b = 0, respectively.[7] Specifically, an inverse Gaussian distribution of the form

f ( x ; μ , λ ) = [ λ 2 π x 3 ] 1 / 2 exp ( λ ( x μ ) 2 2 μ 2 x ) {\displaystyle f(x;\mu ,\lambda )=\left[{\frac {\lambda }{2\pi x^{3}}}\right]^{1/2}\exp {\left({\frac {-\lambda (x-\mu )^{2}}{2\mu ^{2}x}}\right)}}

is a GIG with a = λ / μ 2 {\displaystyle a=\lambda /\mu ^{2}} , b = λ {\displaystyle b=\lambda } , and p = 1 / 2 {\displaystyle p=-1/2} . A Gamma distribution of the form

g ( x ; α , β ) = β α 1 Γ ( α ) x α 1 e β x {\displaystyle g(x;\alpha ,\beta )=\beta ^{\alpha }{\frac {1}{\Gamma (\alpha )}}x^{\alpha -1}e^{-\beta x}}

is a GIG with a = 2 β {\displaystyle a=2\beta } , b = 0 {\displaystyle b=0} , and p = α {\displaystyle p=\alpha } .

Other special cases include the inverse-gamma distribution, for a = 0.[7]

Conjugate prior for Gaussian

The GIG distribution is conjugate to the normal distribution when serving as the mixing distribution in a normal variance-mean mixture.[8][9] Let the prior distribution for some hidden variable, say z {\displaystyle z} , be GIG:

P ( z a , b , p ) = GIG ( z a , b , p ) {\displaystyle P(z\mid a,b,p)=\operatorname {GIG} (z\mid a,b,p)}

and let there be T {\displaystyle T} observed data points, X = x 1 , , x T {\displaystyle X=x_{1},\ldots ,x_{T}} , with normal likelihood function, conditioned on z : {\displaystyle z:}

P ( X z , α , β ) = i = 1 T N ( x i α + β z , z ) {\displaystyle P(X\mid z,\alpha ,\beta )=\prod _{i=1}^{T}N(x_{i}\mid \alpha +\beta z,z)}

where N ( x μ , v ) {\displaystyle N(x\mid \mu ,v)} is the normal distribution, with mean μ {\displaystyle \mu } and variance v {\displaystyle v} . Then the posterior for z {\displaystyle z} , given the data is also GIG:

P ( z X , a , b , p , α , β ) = GIG ( z a + T β 2 , b + S , p T 2 ) {\displaystyle P(z\mid X,a,b,p,\alpha ,\beta )={\text{GIG}}\left(z\mid a+T\beta ^{2},b+S,p-{\frac {T}{2}}\right)}

where S = i = 1 T ( x i α ) 2 {\displaystyle \textstyle S=\sum _{i=1}^{T}(x_{i}-\alpha )^{2}} .[note 1]

Sichel distribution

The Sichel distribution[10][11] results when the GIG is used as the mixing distribution for the Poisson parameter λ {\displaystyle \lambda } .

Notes

  1. ^ Due to the conjugacy, these details can be derived without solving integrals, by noting that
    P ( z X , a , b , p , α , β ) P ( z a , b , p ) P ( X z , α , β ) {\displaystyle P(z\mid X,a,b,p,\alpha ,\beta )\propto P(z\mid a,b,p)P(X\mid z,\alpha ,\beta )} .
    Omitting all factors independent of z {\displaystyle z} , the right-hand-side can be simplified to give an un-normalized GIG distribution, from which the posterior parameters can be identified.

References

  1. ^ Seshadri, V. (1997). "Halphen's laws". In Kotz, S.; Read, C. B.; Banks, D. L. (eds.). Encyclopedia of Statistical Sciences, Update Volume 1. New York: Wiley. pp. 302–306.
  2. ^ Perreault, L.; Bobée, B.; Rasmussen, P. F. (1999). "Halphen Distribution System. I: Mathematical and Statistical Properties". Journal of Hydrologic Engineering. 4 (3): 189. doi:10.1061/(ASCE)1084-0699(1999)4:3(189).
  3. ^ Étienne Halphen was the grandson of the mathematician Georges Henri Halphen.
  4. ^ Jørgensen, Bent (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics. Vol. 9. New York–Berlin: Springer-Verlag. ISBN 0-387-90665-7. MR 0648107.
  5. ^ O. Barndorff-Nielsen and Christian Halgreen, Infinite Divisibility of the Hyperbolic and Generalized Inverse Gaussian Distributions, Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 1977
  6. ^ Pal, Subhadip; Gaskins, Jeremy (23 May 2022). "Modified Pólya-Gamma data augmentation for Bayesian analysis of directional data". Journal of Statistical Computation and Simulation. 92 (16): 3430–3451. doi:10.1080/00949655.2022.2067853. ISSN 0094-9655. S2CID 249022546.
  7. ^ a b Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1994), Continuous univariate distributions. Vol. 1, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (2nd ed.), New York: John Wiley & Sons, pp. 284–285, ISBN 978-0-471-58495-7, MR 1299979
  8. ^ Dimitris Karlis, "An EM type algorithm for maximum likelihood estimation of the normal–inverse Gaussian distribution", Statistics & Probability Letters 57 (2002) 43–52.
  9. ^ Barndorf-Nielsen, O.E., 1997. Normal Inverse Gaussian Distributions and stochastic volatility modelling. Scand. J. Statist. 24, 1–13.
  10. ^ Sichel, Herbert S, 1975. "On a distribution law for word frequencies." Journal of the American Statistical Association 70.351a: 542-547.
  11. ^ Stein, Gillian Z., Walter Zucchini, and June M. Juritz, 1987. "Parameter estimation for the Sichel distribution and its multivariate extension." Journal of the American Statistical Association 82.399: 938-944.

See also


  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons