Cantor distribution

Probability distribution
Cantor
Cumulative distribution function
Cumulative distribution function for the Cantor distribution
Parameters none
Support Cantor set, a subset of [0,1]
PMF none
CDF Cantor function
Mean 1/2
Median anywhere in [1/3, 2/3]
Mode n/a
Variance 1/8
Skewness 0
Excess kurtosis −8/5
MGF e t / 2 k = 1 cosh ( t 3 k ) {\displaystyle e^{t/2}\prod _{k=1}^{\infty }\cosh \left({\frac {t}{3^{k}}}\right)}
CF e i t / 2 k = 1 cos ( t 3 k ) {\displaystyle e^{it/2}\prod _{k=1}^{\infty }\cos \left({\frac {t}{3^{k}}}\right)}

The Cantor distribution is the probability distribution whose cumulative distribution function is the Cantor function.

This distribution has neither a probability density function nor a probability mass function, since although its cumulative distribution function is a continuous function, the distribution is not absolutely continuous with respect to Lebesgue measure, nor does it have any point-masses. It is thus neither a discrete nor an absolutely continuous probability distribution, nor is it a mixture of these. Rather it is an example of a singular distribution.

Its cumulative distribution function is continuous everywhere but horizontal almost everywhere, so is sometimes referred to as the Devil's staircase, although that term has a more general meaning.

Characterization

The support of the Cantor distribution is the Cantor set, itself the intersection of the (countably infinitely many) sets:

C 0 = [ 0 , 1 ] C 1 = [ 0 , 1 / 3 ] [ 2 / 3 , 1 ] C 2 = [ 0 , 1 / 9 ] [ 2 / 9 , 1 / 3 ] [ 2 / 3 , 7 / 9 ] [ 8 / 9 , 1 ] C 3 = [ 0 , 1 / 27 ] [ 2 / 27 , 1 / 9 ] [ 2 / 9 , 7 / 27 ] [ 8 / 27 , 1 / 3 ] [ 2 / 3 , 19 / 27 ] [ 20 / 27 , 7 / 9 ] [ 8 / 9 , 25 / 27 ] [ 26 / 27 , 1 ] C 4 = [ 0 , 1 / 81 ] [ 2 / 81 , 1 / 27 ] [ 2 / 27 , 7 / 81 ] [ 8 / 81 , 1 / 9 ] [ 2 / 9 , 19 / 81 ] [ 20 / 81 , 7 / 27 ] [ 8 / 27 , 25 / 81 ] [ 26 / 81 , 1 / 3 ] [ 2 / 3 , 55 / 81 ] [ 56 / 81 , 19 / 27 ] [ 20 / 27 , 61 / 81 ] [ 62 / 81 , 21 / 27 ] [ 8 / 9 , 73 / 81 ] [ 74 / 81 , 25 / 27 ] [ 26 / 27 , 79 / 81 ] [ 80 / 81 , 1 ] C 5 = {\displaystyle {\begin{aligned}C_{0}={}&[0,1]\\[8pt]C_{1}={}&[0,1/3]\cup [2/3,1]\\[8pt]C_{2}={}&[0,1/9]\cup [2/9,1/3]\cup [2/3,7/9]\cup [8/9,1]\\[8pt]C_{3}={}&[0,1/27]\cup [2/27,1/9]\cup [2/9,7/27]\cup [8/27,1/3]\cup \\[4pt]{}&[2/3,19/27]\cup [20/27,7/9]\cup [8/9,25/27]\cup [26/27,1]\\[8pt]C_{4}={}&[0,1/81]\cup [2/81,1/27]\cup [2/27,7/81]\cup [8/81,1/9]\cup [2/9,19/81]\cup [20/81,7/27]\cup \\[4pt]&[8/27,25/81]\cup [26/81,1/3]\cup [2/3,55/81]\cup [56/81,19/27]\cup [20/27,61/81]\cup \\[4pt]&[62/81,21/27]\cup [8/9,73/81]\cup [74/81,25/27]\cup [26/27,79/81]\cup [80/81,1]\\[8pt]C_{5}={}&\cdots \end{aligned}}}

The Cantor distribution is the unique probability distribution for which for any Ct (t ∈ { 0, 1, 2, 3, ... }), the probability of a particular interval in Ct containing the Cantor-distributed random variable is identically 2t on each one of the 2t intervals.

Moments

It is easy to see by symmetry and being bounded that for a random variable X having this distribution, its expected value E(X) = 1/2, and that all odd central moments of X are 0.

The law of total variance can be used to find the variance var(X), as follows. For the above set C1, let Y = 0 if X ∈ [0,1/3], and 1 if X ∈ [2/3,1]. Then:

var ( X ) = E ( var ( X Y ) ) + var ( E ( X Y ) ) = 1 9 var ( X ) + var { 1 / 6 with probability   1 / 2 5 / 6 with probability   1 / 2 } = 1 9 var ( X ) + 1 9 {\displaystyle {\begin{aligned}\operatorname {var} (X)&=\operatorname {E} (\operatorname {var} (X\mid Y))+\operatorname {var} (\operatorname {E} (X\mid Y))\\&={\frac {1}{9}}\operatorname {var} (X)+\operatorname {var} \left\{{\begin{matrix}1/6&{\mbox{with probability}}\ 1/2\\5/6&{\mbox{with probability}}\ 1/2\end{matrix}}\right\}\\&={\frac {1}{9}}\operatorname {var} (X)+{\frac {1}{9}}\end{aligned}}}

From this we get:

var ( X ) = 1 8 . {\displaystyle \operatorname {var} (X)={\frac {1}{8}}.}

A closed-form expression for any even central moment can be found by first obtaining the even cumulants[1]

κ 2 n = 2 2 n 1 ( 2 2 n 1 ) B 2 n n ( 3 2 n 1 ) , {\displaystyle \kappa _{2n}={\frac {2^{2n-1}(2^{2n}-1)B_{2n}}{n\,(3^{2n}-1)}},\,\!}

where B2n is the 2nth Bernoulli number, and then expressing the moments as functions of the cumulants.

References

  1. ^ Morrison, Kent (1998-07-23). "Random Walks with Decreasing Steps" (PDF). Department of Mathematics, California Polytechnic State University. Archived from the original (PDF) on 2015-12-02. Retrieved 2007-02-16.

Further reading

  • Hewitt, E.; Stromberg, K. (1965). Real and Abstract Analysis. Berlin-Heidelberg-New York: Springer-Verlag. This, as with other standard texts, has the Cantor function and its one sided derivates.
  • Hu, Tian-You; Lau, Ka Sing (2002). "Fourier Asymptotics of Cantor Type Measures at Infinity". Proc. AMS. Vol. 130, no. 9. pp. 2711–2717. This is more modern than the other texts in this reference list.
  • Knill, O. (2006). Probability Theory & Stochastic Processes. India: Overseas Press.
  • Mattilla, P. (1995). Geometry of Sets in Euclidean Spaces. San Francisco: Cambridge University Press. This has more advanced material on fractals.
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons