Landau distribution

Landau distribution
Probability density function

μ = 0 , c = π / 2 {\displaystyle \mu =0,\;c=\pi /2}
Parameters

c ( 0 , ) {\displaystyle c\in (0,\infty )} — scale parameter

μ ( , ) {\displaystyle \mu \in (-\infty ,\infty )} — location parameter
Support R {\displaystyle \mathbb {R} }
PDF 1 π c 0 e t cos ( t ( x μ c ) + 2 t π log ( t c ) ) d t {\displaystyle {\frac {1}{\pi c}}\int _{0}^{\infty }e^{-t}\cos \left(t\left({\frac {x-\mu }{c}}\right)+{\frac {2t}{\pi }}\log \left({\frac {t}{c}}\right)\right)\,dt}
Mean Undefined
Variance Undefined
MGF Undefined
CF exp ( i t μ 2 i c t π log | t | c | t | ) {\displaystyle \exp \left(it\mu -{\frac {2ict}{\pi }}\log |t|-c|t|\right)}

In probability theory, the Landau distribution[1] is a probability distribution named after Lev Landau. Because of the distribution's "fat" tail, the moments of the distribution, such as mean or variance, are undefined. The distribution is a particular case of stable distribution.

Definition

The probability density function, as written originally by Landau, is defined by the complex integral:

p ( x ) = 1 2 π i a i a + i e s log ( s ) + x s d s , {\displaystyle p(x)={\frac {1}{2\pi i}}\int _{a-i\infty }^{a+i\infty }e^{s\log(s)+xs}\,ds,}

where a is an arbitrary positive real number, meaning that the integration path can be any parallel to the imaginary axis, intersecting the real positive semi-axis, and log {\displaystyle \log } refers to the natural logarithm. In other words it is the Laplace transform of the function s s {\displaystyle s^{s}} .

The following real integral is equivalent to the above:

p ( x ) = 1 π 0 e t log ( t ) x t sin ( π t ) d t . {\displaystyle p(x)={\frac {1}{\pi }}\int _{0}^{\infty }e^{-t\log(t)-xt}\sin(\pi t)\,dt.}

The full family of Landau distributions is obtained by extending the original distribution to a location-scale family of stable distributions with parameters α = 1 {\displaystyle \alpha =1} and β = 1 {\displaystyle \beta =1} ,[2] with characteristic function:[3]

φ ( t ; μ , c ) = exp ( i t μ 2 i c t π log | t | c | t | ) {\displaystyle \varphi (t;\mu ,c)=\exp \left(it\mu -{\tfrac {2ict}{\pi }}\log |t|-c|t|\right)}

where c ( 0 , ) {\displaystyle c\in (0,\infty )} and μ ( , ) {\displaystyle \mu \in (-\infty ,\infty )} , which yields a density function:

p ( x ; μ , c ) = 1 π c 0 e t cos ( t ( x μ c ) + 2 t π log ( t c ) ) d t , {\displaystyle p(x;\mu ,c)={\frac {1}{\pi c}}\int _{0}^{\infty }e^{-t}\cos \left(t\left({\frac {x-\mu }{c}}\right)+{\frac {2t}{\pi }}\log \left({\frac {t}{c}}\right)\right)\,dt,}

Taking μ = 0 {\displaystyle \mu =0} and c = π 2 {\displaystyle c={\frac {\pi }{2}}} we get the original form of p ( x ) {\displaystyle p(x)} above.

Properties

The approximation function for μ = 0 , c = 1 {\displaystyle \mu =0,\,c=1}
  • Translation: If X Landau ( μ , c ) {\displaystyle X\sim {\textrm {Landau}}(\mu ,c)\,} then X + m Landau ( μ + m , c ) {\displaystyle X+m\sim {\textrm {Landau}}(\mu +m,c)\,} .
  • Scaling: If X Landau ( μ , c ) {\displaystyle X\sim {\textrm {Landau}}(\mu ,c)\,} then a X Landau ( a μ 2 a c log ( a ) π , a c ) {\displaystyle aX\sim {\textrm {Landau}}(a\mu -{\tfrac {2ac\log(a)}{\pi }},ac)\,} .
  • Sum: If X Landau ( μ 1 , c 1 ) {\displaystyle X\sim {\textrm {Landau}}(\mu _{1},c_{1})} and Y Landau ( μ 2 , c 2 ) {\displaystyle Y\sim {\textrm {Landau}}(\mu _{2},c_{2})\,} then X + Y Landau ( μ 1 + μ 2 , c 1 + c 2 ) {\displaystyle X+Y\sim {\textrm {Landau}}(\mu _{1}+\mu _{2},c_{1}+c_{2})} .

These properties can all be derived from the characteristic function. Together they imply that the Landau distributions are closed under affine transformations.

Approximations

In the "standard" case μ = 0 {\displaystyle \mu =0} and c = π / 2 {\displaystyle c=\pi /2} , the pdf can be approximated[4] using Lindhard theory which says:

p ( x + log ( x ) 1 + γ ) exp ( 1 / x ) x ( 1 + x ) , {\displaystyle p(x+\log(x)-1+\gamma )\approx {\frac {\exp(-1/x)}{x(1+x)}},}

where γ {\displaystyle \gamma } is Euler's constant.

A similar approximation [5] of p ( x ; μ , c ) {\displaystyle p(x;\mu ,c)} for μ = 0 {\displaystyle \mu =0} and c = 1 {\displaystyle c=1} is:

p ( x ) 1 2 π exp ( x + e x 2 ) . {\displaystyle p(x)\approx {\frac {1}{\sqrt {2\pi }}}\exp \left(-{\frac {x+e^{-x}}{2}}\right).}

Related distributions

  • The Landau distribution is a stable distribution with stability parameter α {\displaystyle \alpha } and skewness parameter β {\displaystyle \beta } both equal to 1.

References

  1. ^ Landau, L. (1944). "On the energy loss of fast particles by ionization". J. Phys. (USSR). 8: 201.
  2. ^ Gentle, James E. (2003). Random Number Generation and Monte Carlo Methods. Statistics and Computing (2nd ed.). New York, NY: Springer. p. 196. doi:10.1007/b97336. ISBN 978-0-387-00178-4.
  3. ^ Zolotarev, V.M. (1986). One-dimensional stable distributions. Providence, R.I.: American Mathematical Society. ISBN 0-8218-4519-5.
  4. ^ "LandauDistribution—Wolfram Language Documentation".
  5. ^ Behrens, S. E.; Melissinos, A.C. Univ. of Rochester Preprint UR-776 (1981).
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons