Delaporte distribution

Delaporte
Probability mass function
Plot of the PMF for various Delaporte distributions.
When α {\displaystyle \alpha } and β {\displaystyle \beta } are 0, the distribution is the Poisson.
When λ {\displaystyle \lambda } is 0, the distribution is the negative binomial.
Cumulative distribution function
Plot of the PMF for various Delaporte distributions.
When α {\displaystyle \alpha } and β {\displaystyle \beta } are 0, the distribution is the Poisson.
When λ {\displaystyle \lambda } is 0, the distribution is the negative binomial.
Parameters

λ > 0 {\displaystyle \lambda >0} (fixed mean)

α , β > 0 {\displaystyle \alpha ,\beta >0} (parameters of variable mean)
Support k { 0 , 1 , 2 , } {\displaystyle k\in \{0,1,2,\ldots \}}
PMF i = 0 k Γ ( α + i ) β i λ k i e λ Γ ( α ) i ! ( 1 + β ) α + i ( k i ) ! {\displaystyle \sum _{i=0}^{k}{\frac {\Gamma (\alpha +i)\beta ^{i}\lambda ^{k-i}e^{-\lambda }}{\Gamma (\alpha )i!(1+\beta )^{\alpha +i}(k-i)!}}}
CDF j = 0 k i = 0 j Γ ( α + i ) β i λ j i e λ Γ ( α ) i ! ( 1 + β ) α + i ( j i ) ! {\displaystyle \sum _{j=0}^{k}\sum _{i=0}^{j}{\frac {\Gamma (\alpha +i)\beta ^{i}\lambda ^{j-i}e^{-\lambda }}{\Gamma (\alpha )i!(1+\beta )^{\alpha +i}(j-i)!}}}
Mean λ + α β {\displaystyle \lambda +\alpha \beta }
Mode { z , z + 1 { z Z } : z = ( α 1 ) β + λ z otherwise {\displaystyle {\begin{cases}z,z+1&\{z\in \mathbb {Z} \}:\;z=(\alpha -1)\beta +\lambda \\\lfloor z\rfloor &{\textrm {otherwise}}\end{cases}}}
Variance λ + α β ( 1 + β ) {\displaystyle \lambda +\alpha \beta (1+\beta )}
Skewness See #Properties
Excess kurtosis See #Properties
MGF e λ ( e t 1 ) ( 1 β ( e t 1 ) ) α {\displaystyle {\frac {e^{\lambda (e^{t}-1)}}{(1-\beta (e^{t}-1))^{\alpha }}}}

The Delaporte distribution is a discrete probability distribution that has received attention in actuarial science.[1][2] It can be defined using the convolution of a negative binomial distribution with a Poisson distribution.[2] Just as the negative binomial distribution can be viewed as a Poisson distribution where the mean parameter is itself a random variable with a gamma distribution, the Delaporte distribution can be viewed as a compound distribution based on a Poisson distribution, where there are two components to the mean parameter: a fixed component, which has the λ {\displaystyle \lambda } parameter, and a gamma-distributed variable component, which has the α {\displaystyle \alpha } and β {\displaystyle \beta } parameters.[3] The distribution is named for Pierre Delaporte, who analyzed it in relation to automobile accident claim counts in 1959,[4] although it appeared in a different form as early as 1934 in a paper by Rolf von Lüders,[5] where it was called the Formel II distribution.[2]

Properties

The skewness of the Delaporte distribution is:

λ + α β ( 1 + 3 β + 2 β 2 ) ( λ + α β ( 1 + β ) ) 3 2 {\displaystyle {\frac {\lambda +\alpha \beta (1+3\beta +2\beta ^{2})}{\left(\lambda +\alpha \beta (1+\beta )\right)^{\frac {3}{2}}}}}

The excess kurtosis of the distribution is:

λ + 3 λ 2 + α β ( 1 + 6 λ + 6 λ β + 7 β + 12 β 2 + 6 β 3 + 3 α β + 6 α β 2 + 3 α β 3 ) ( λ + α β ( 1 + β ) ) 2 {\displaystyle {\frac {\lambda +3\lambda ^{2}+\alpha \beta (1+6\lambda +6\lambda \beta +7\beta +12\beta ^{2}+6\beta ^{3}+3\alpha \beta +6\alpha \beta ^{2}+3\alpha \beta ^{3})}{\left(\lambda +\alpha \beta (1+\beta )\right)^{2}}}}

References

  1. ^ Panjer, Harry H. (2006). "Discrete Parametric Distributions". In Teugels, Jozef L.; Sundt, Bjørn (eds.). Encyclopedia of Actuarial Science. John Wiley & Sons. doi:10.1002/9780470012505.tad027. ISBN 978-0-470-01250-5.
  2. ^ a b c Johnson, Norman Lloyd; Kemp, Adrienne W.; Kotz, Samuel (2005). Univariate discrete distributions (Third ed.). John Wiley & Sons. pp. 241–242. ISBN 978-0-471-27246-5.
  3. ^ Vose, David (2008). Risk analysis: a quantitative guide (Third, illustrated ed.). John Wiley & Sons. pp. 618–619. ISBN 978-0-470-51284-5. LCCN 2007041696.
  4. ^ Delaporte, Pierre J. (1960). "Quelques problèmes de statistiques mathématiques poses par l'Assurance Automobile et le Bonus pour non sinistre" [Some problems of mathematical statistics as related to automobile insurance and no-claims bonus]. Bulletin Trimestriel de l'Institut des Actuaires Français (in French). 227: 87–102.
  5. ^ von Lüders, Rolf (1934). "Die Statistik der seltenen Ereignisse" [The statistics of rare events]. Biometrika (in German). 26 (1–2): 108–128. doi:10.1093/biomet/26.1-2.108. JSTOR 2332055.

Further reading

  • Murat, M.; Szynal, D. (1998). "On moments of counting distributions satisfying the k'th-order recursion and their compound distributions". Journal of Mathematical Sciences. 92 (4): 4038–4043. doi:10.1007/BF02432340. S2CID 122625458.

External links

  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons