Beta prime distribution

Probability distribution
Beta prime
Probability density function
Cumulative distribution function
Parameters α > 0 {\displaystyle \alpha >0} shape (real)
β > 0 {\displaystyle \beta >0} shape (real)
Support x [ 0 , ) {\displaystyle x\in [0,\infty )\!}
PDF f ( x ) = x α 1 ( 1 + x ) α β B ( α , β ) {\displaystyle f(x)={\frac {x^{\alpha -1}(1+x)^{-\alpha -\beta }}{B(\alpha ,\beta )}}\!}
CDF I x 1 + x ( α , β ) {\displaystyle I_{{\frac {x}{1+x}}(\alpha ,\beta )}} where I x ( α , β ) {\displaystyle I_{x}(\alpha ,\beta )} is the incomplete beta function
Mean α β 1  if  β > 1 {\displaystyle {\frac {\alpha }{\beta -1}}{\text{ if }}\beta >1}
Mode α 1 β + 1  if  α 1 , 0 otherwise {\displaystyle {\frac {\alpha -1}{\beta +1}}{\text{ if }}\alpha \geq 1{\text{, 0 otherwise}}\!}
Variance α ( α + β 1 ) ( β 2 ) ( β 1 ) 2  if  β > 2 {\displaystyle {\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(\beta -1)^{2}}}{\text{ if }}\beta >2}
Skewness 2 ( 2 α + β 1 ) β 3 β 2 α ( α + β 1 )  if  β > 3 {\displaystyle {\frac {2(2\alpha +\beta -1)}{\beta -3}}{\sqrt {\frac {\beta -2}{\alpha (\alpha +\beta -1)}}}{\text{ if }}\beta >3}
MGF Does not exist
CF e i t Γ ( α + β ) Γ ( β ) G 1 , 2 2 , 0 ( α + β β , 0 | i t ) {\displaystyle {\frac {e^{-it}\Gamma (\alpha +\beta )}{\Gamma (\beta )}}G_{1,2}^{\,2,0}\!\left(\left.{\begin{matrix}\alpha +\beta \\\beta ,0\end{matrix}}\;\right|\,-it\right)}

In probability theory and statistics, the beta prime distribution (also known as inverted beta distribution or beta distribution of the second kind[1]) is an absolutely continuous probability distribution. If p [ 0 , 1 ] {\displaystyle p\in [0,1]} has a beta distribution, then the odds p 1 p {\displaystyle {\frac {p}{1-p}}} has a beta prime distribution.

Definitions

Beta prime distribution is defined for x > 0 {\displaystyle x>0} with two parameters α and β, having the probability density function:

f ( x ) = x α 1 ( 1 + x ) α β B ( α , β ) {\displaystyle f(x)={\frac {x^{\alpha -1}(1+x)^{-\alpha -\beta }}{B(\alpha ,\beta )}}}

where B is the Beta function.

The cumulative distribution function is

F ( x ; α , β ) = I x 1 + x ( α , β ) , {\displaystyle F(x;\alpha ,\beta )=I_{\frac {x}{1+x}}\left(\alpha ,\beta \right),}

where I is the regularized incomplete beta function.

The expected value, variance, and other details of the distribution are given in the sidebox; for β > 4 {\displaystyle \beta >4} , the excess kurtosis is

γ 2 = 6 α ( α + β 1 ) ( 5 β 11 ) + ( β 1 ) 2 ( β 2 ) α ( α + β 1 ) ( β 3 ) ( β 4 ) . {\displaystyle \gamma _{2}=6{\frac {\alpha (\alpha +\beta -1)(5\beta -11)+(\beta -1)^{2}(\beta -2)}{\alpha (\alpha +\beta -1)(\beta -3)(\beta -4)}}.}

While the related beta distribution is the conjugate prior distribution of the parameter of a Bernoulli distribution expressed as a probability, the beta prime distribution is the conjugate prior distribution of the parameter of a Bernoulli distribution expressed in odds. The distribution is a Pearson type VI distribution.[1]

The mode of a variate X distributed as β ( α , β ) {\displaystyle \beta '(\alpha ,\beta )} is X ^ = α 1 β + 1 {\displaystyle {\hat {X}}={\frac {\alpha -1}{\beta +1}}} . Its mean is α β 1 {\displaystyle {\frac {\alpha }{\beta -1}}} if β > 1 {\displaystyle \beta >1} (if β 1 {\displaystyle \beta \leq 1} the mean is infinite, in other words it has no well defined mean) and its variance is α ( α + β 1 ) ( β 2 ) ( β 1 ) 2 {\displaystyle {\frac {\alpha (\alpha +\beta -1)}{(\beta -2)(\beta -1)^{2}}}} if β > 2 {\displaystyle \beta >2} .

For α < k < β {\displaystyle -\alpha <k<\beta } , the k-th moment E [ X k ] {\displaystyle E[X^{k}]} is given by

E [ X k ] = B ( α + k , β k ) B ( α , β ) . {\displaystyle E[X^{k}]={\frac {B(\alpha +k,\beta -k)}{B(\alpha ,\beta )}}.}

For k N {\displaystyle k\in \mathbb {N} } with k < β , {\displaystyle k<\beta ,} this simplifies to

E [ X k ] = i = 1 k α + i 1 β i . {\displaystyle E[X^{k}]=\prod _{i=1}^{k}{\frac {\alpha +i-1}{\beta -i}}.}

The cdf can also be written as

x α 2 F 1 ( α , α + β , α + 1 , x ) α B ( α , β ) {\displaystyle {\frac {x^{\alpha }\cdot {}_{2}F_{1}(\alpha ,\alpha +\beta ,\alpha +1,-x)}{\alpha \cdot B(\alpha ,\beta )}}}

where 2 F 1 {\displaystyle {}_{2}F_{1}} is the Gauss's hypergeometric function 2F1 .

Alternative parameterization

The beta prime distribution may also be reparameterized in terms of its mean μ > 0 and precision ν > 0 parameters ([2] p. 36).

Consider the parameterization μ = α/(β-1) and ν = β- 2, i.e., α = μ( 1 + ν) and β = 2 + ν. Under this parameterization E[Y] = μ and Var[Y] = μ(1 + μ)/ν.

Generalization

Two more parameters can be added to form the generalized beta prime distribution β ( α , β , p , q ) {\displaystyle \beta '(\alpha ,\beta ,p,q)} :

  • p > 0 {\displaystyle p>0} shape (real)
  • q > 0 {\displaystyle q>0} scale (real)

having the probability density function:

f ( x ; α , β , p , q ) = p ( x q ) α p 1 ( 1 + ( x q ) p ) α β q B ( α , β ) {\displaystyle f(x;\alpha ,\beta ,p,q)={\frac {p\left({\frac {x}{q}}\right)^{\alpha p-1}\left(1+\left({\frac {x}{q}}\right)^{p}\right)^{-\alpha -\beta }}{qB(\alpha ,\beta )}}}

with mean

q Γ ( α + 1 p ) Γ ( β 1 p ) Γ ( α ) Γ ( β ) if  β p > 1 {\displaystyle {\frac {q\Gamma \left(\alpha +{\tfrac {1}{p}}\right)\Gamma (\beta -{\tfrac {1}{p}})}{\Gamma (\alpha )\Gamma (\beta )}}\quad {\text{if }}\beta p>1}

and mode

q ( α p 1 β p + 1 ) 1 p if  α p 1 {\displaystyle q\left({\frac {\alpha p-1}{\beta p+1}}\right)^{\tfrac {1}{p}}\quad {\text{if }}\alpha p\geq 1}

Note that if p = q = 1 then the generalized beta prime distribution reduces to the standard beta prime distribution.

This generalization can be obtained via the following invertible transformation. If y β ( α , β ) {\displaystyle y\sim \beta '(\alpha ,\beta )} and x = q y 1 / p {\displaystyle x=qy^{1/p}} for q , p > 0 {\displaystyle q,p>0} , then x β ( α , β , p , q ) {\displaystyle x\sim \beta '(\alpha ,\beta ,p,q)} .

Compound gamma distribution

The compound gamma distribution[3] is the generalization of the beta prime when the scale parameter, q is added, but where p = 1. It is so named because it is formed by compounding two gamma distributions:

β ( x ; α , β , 1 , q ) = 0 G ( x ; α , r ) G ( r ; β , q ) d r {\displaystyle \beta '(x;\alpha ,\beta ,1,q)=\int _{0}^{\infty }G(x;\alpha ,r)G(r;\beta ,q)\;dr}

where G ( x ; a , b ) {\displaystyle G(x;a,b)} is the gamma pdf with shape a {\displaystyle a} and inverse scale b {\displaystyle b} .

The mode, mean and variance of the compound gamma can be obtained by multiplying the mode and mean in the above infobox by q and the variance by q2.

Another way to express the compounding is if r G ( β , q ) {\displaystyle r\sim G(\beta ,q)} and x r G ( α , r ) {\displaystyle x\mid r\sim G(\alpha ,r)} , then x β ( α , β , 1 , q ) {\displaystyle x\sim \beta '(\alpha ,\beta ,1,q)} . (This gives one way to generate random variates with compound gamma, or beta prime distributions. Another is via the ratio of independent gamma variates, as shown below.)

Properties

  • If X β ( α , β ) {\displaystyle X\sim \beta '(\alpha ,\beta )} then 1 X β ( β , α ) {\displaystyle {\tfrac {1}{X}}\sim \beta '(\beta ,\alpha )} .
  • If Y β ( α , β ) {\displaystyle Y\sim \beta '(\alpha ,\beta )} , and X = q Y 1 / p {\displaystyle X=qY^{1/p}} , then X β ( α , β , p , q ) {\displaystyle X\sim \beta '(\alpha ,\beta ,p,q)} .
  • If X β ( α , β , p , q ) {\displaystyle X\sim \beta '(\alpha ,\beta ,p,q)} then k X β ( α , β , p , k q ) {\displaystyle kX\sim \beta '(\alpha ,\beta ,p,kq)} .
  • β ( α , β , 1 , 1 ) = β ( α , β ) {\displaystyle \beta '(\alpha ,\beta ,1,1)=\beta '(\alpha ,\beta )}
  • If X 1 β ( α , β ) {\displaystyle X_{1}\sim \beta '(\alpha ,\beta )} and X 2 β ( α , β ) {\displaystyle X_{2}\sim \beta '(\alpha ,\beta )} two iid variables, then Y = X 1 + X 2 β ( γ , δ ) {\displaystyle Y=X_{1}+X_{2}\sim \beta '(\gamma ,\delta )} with γ = 2 α ( α + β 2 2 β + 2 α β 4 α + 1 ) ( β 1 ) ( α + β 1 ) {\displaystyle \gamma ={\frac {2\alpha (\alpha +\beta ^{2}-2\beta +2\alpha \beta -4\alpha +1)}{(\beta -1)(\alpha +\beta -1)}}} and δ = 2 α + β 2 β + 2 α β 4 α α + β 1 {\displaystyle \delta ={\frac {2\alpha +\beta ^{2}-\beta +2\alpha \beta -4\alpha }{\alpha +\beta -1}}} , as the beta prime distribution is infinitely divisible.
  • More generally, let X 1 , . . . , X n n {\displaystyle X_{1},...,X_{n}n} iid variables following the same beta prime distribution, i.e. i , 1 i n , X i β ( α , β ) {\displaystyle \forall i,1\leq i\leq n,X_{i}\sim \beta '(\alpha ,\beta )} , then the sum S = X 1 + . . . + X n β ( γ , δ ) {\displaystyle S=X_{1}+...+X_{n}\sim \beta '(\gamma ,\delta )} with γ = n α ( α + β 2 2 β + n α β 2 n α + 1 ) ( β 1 ) ( α + β 1 ) {\displaystyle \gamma ={\frac {n\alpha (\alpha +\beta ^{2}-2\beta +n\alpha \beta -2n\alpha +1)}{(\beta -1)(\alpha +\beta -1)}}} and δ = 2 α + β 2 β + n α β 2 n α α + β 1 {\displaystyle \delta ={\frac {2\alpha +\beta ^{2}-\beta +n\alpha \beta -2n\alpha }{\alpha +\beta -1}}} .

Related distributions

  • If X F ( 2 α , 2 β ) {\displaystyle X\sim F(2\alpha ,2\beta )} has an F-distribution, then α β X β ( α , β ) {\displaystyle {\tfrac {\alpha }{\beta }}X\sim \beta '(\alpha ,\beta )} , or equivalently, X β ( α , β , 1 , β α ) {\displaystyle X\sim \beta '(\alpha ,\beta ,1,{\tfrac {\beta }{\alpha }})} .
  • If X Beta ( α , β ) {\displaystyle X\sim {\textrm {Beta}}(\alpha ,\beta )} then X 1 X β ( α , β ) {\displaystyle {\frac {X}{1-X}}\sim \beta '(\alpha ,\beta )} .
  • If X β ( α , β ) {\displaystyle X\sim \beta '(\alpha ,\beta )} then X 1 + X Beta ( α , β ) {\displaystyle {\frac {X}{1+X}}\sim {\textrm {Beta}}(\alpha ,\beta )} .
  • For gamma distribution parametrization I:
    • If X k Γ ( α k , θ k ) {\displaystyle X_{k}\sim \Gamma (\alpha _{k},\theta _{k})} are independent, then X 1 X 2 β ( α 1 , α 2 , 1 , θ 1 θ 2 ) {\displaystyle {\tfrac {X_{1}}{X_{2}}}\sim \beta '(\alpha _{1},\alpha _{2},1,{\tfrac {\theta _{1}}{\theta _{2}}})} . Note θ 1 , θ 2 , θ 1 θ 2 {\displaystyle \theta _{1},\theta _{2},{\tfrac {\theta _{1}}{\theta _{2}}}} are all scale parameters for their respective distributions.
  • For gamma distribution parametrization II:
    • If X k Γ ( α k , β k ) {\displaystyle X_{k}\sim \Gamma (\alpha _{k},\beta _{k})} are independent, then X 1 X 2 β ( α 1 , α 2 , 1 , β 2 β 1 ) {\displaystyle {\tfrac {X_{1}}{X_{2}}}\sim \beta '(\alpha _{1},\alpha _{2},1,{\tfrac {\beta _{2}}{\beta _{1}}})} . The β k {\displaystyle \beta _{k}} are rate parameters, while β 2 β 1 {\displaystyle {\tfrac {\beta _{2}}{\beta _{1}}}} is a scale parameter.
    • If β 2 Γ ( α 1 , β 1 ) {\displaystyle \beta _{2}\sim \Gamma (\alpha _{1},\beta _{1})} and X 2 β 2 Γ ( α 2 , β 2 ) {\displaystyle X_{2}\mid \beta _{2}\sim \Gamma (\alpha _{2},\beta _{2})} , then X 2 β ( α 2 , α 1 , 1 , β 1 ) {\displaystyle X_{2}\sim \beta '(\alpha _{2},\alpha _{1},1,\beta _{1})} . The β k {\displaystyle \beta _{k}} are rate parameters for the gamma distributions, but β 1 {\displaystyle \beta _{1}} is the scale parameter for the beta prime.
  • β ( p , 1 , a , b ) = Dagum ( p , a , b ) {\displaystyle \beta '(p,1,a,b)={\textrm {Dagum}}(p,a,b)} the Dagum distribution
  • β ( 1 , p , a , b ) = SinghMaddala ( p , a , b ) {\displaystyle \beta '(1,p,a,b)={\textrm {SinghMaddala}}(p,a,b)} the Singh–Maddala distribution.
  • β ( 1 , 1 , γ , σ ) = LL ( γ , σ ) {\displaystyle \beta '(1,1,\gamma ,\sigma )={\textrm {LL}}(\gamma ,\sigma )} the log logistic distribution.
  • The beta prime distribution is a special case of the type 6 Pearson distribution.
  • If X has a Pareto distribution with minimum x m {\displaystyle x_{m}} and shape parameter α {\displaystyle \alpha } , then X x m 1 β ( 1 , α ) {\displaystyle {\dfrac {X}{x_{m}}}-1\sim \beta ^{\prime }(1,\alpha )} .
  • If X has a Lomax distribution, also known as a Pareto Type II distribution, with shape parameter α {\displaystyle \alpha } and scale parameter λ {\displaystyle \lambda } , then X λ β ( 1 , α ) {\displaystyle {\frac {X}{\lambda }}\sim \beta ^{\prime }(1,\alpha )} .
  • If X has a standard Pareto Type IV distribution with shape parameter α {\displaystyle \alpha } and inequality parameter γ {\displaystyle \gamma } , then X 1 γ β ( 1 , α ) {\displaystyle X^{\frac {1}{\gamma }}\sim \beta ^{\prime }(1,\alpha )} , or equivalently, X β ( 1 , α , 1 γ , 1 ) {\displaystyle X\sim \beta ^{\prime }(1,\alpha ,{\tfrac {1}{\gamma }},1)} .
  • The inverted Dirichlet distribution is a generalization of the beta prime distribution.
  • If X β ( α , β ) {\displaystyle X\sim \beta '(\alpha ,\beta )} , then ln X {\displaystyle \ln X} has a generalized logistic distribution. More generally, if X β ( α , β , p , q ) {\displaystyle X\sim \beta '(\alpha ,\beta ,p,q)} , then ln X {\displaystyle \ln X} has a scaled and shifted generalized logistic distribution.

Notes

  1. ^ a b Johnson et al (1995), p 248
  2. ^ Bourguignon, M.; Santos-Neto, M.; de Castro, M. (2021). "A new regression model for positive random variables with skewed and long tail". Metron. 79: 33–55. doi:10.1007/s40300-021-00203-y. S2CID 233534544.
  3. ^ Dubey, Satya D. (December 1970). "Compound gamma, beta and F distributions". Metrika. 16: 27–31. doi:10.1007/BF02613934. S2CID 123366328.

References

  • Johnson, N.L., Kotz, S., Balakrishnan, N. (1995). Continuous Univariate Distributions, Volume 2 (2nd Edition), Wiley. ISBN 0-471-58494-0
  • Bourguignon, M.; Santos-Neto, M.; de Castro, M. (2021), "A new regression model for positive random variables with skewed and long tail", Metron, 79: 33–55, doi:10.1007/s40300-021-00203-y, S2CID 233534544


  • MathWorld article
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons