Burr distribution

Burr Type XII
Probability density function
Cumulative distribution function
Parameters c > 0 {\displaystyle c>0\!}
k > 0 {\displaystyle k>0\!}
Support x > 0 {\displaystyle x>0\!}
PDF c k x c 1 ( 1 + x c ) k + 1 {\displaystyle ck{\frac {x^{c-1}}{(1+x^{c})^{k+1}}}\!}
CDF 1 ( 1 + x c ) k {\displaystyle 1-\left(1+x^{c}\right)^{-k}}
Mean μ 1 = k B ( k 1 / c , 1 + 1 / c ) {\displaystyle \mu _{1}=k\operatorname {\mathrm {B} } (k-1/c,\,1+1/c)} where Β() is the beta function
Median ( 2 1 k 1 ) 1 c {\displaystyle \left(2^{\frac {1}{k}}-1\right)^{\frac {1}{c}}}
Mode ( c 1 k c + 1 ) 1 c {\displaystyle \left({\frac {c-1}{kc+1}}\right)^{\frac {1}{c}}}
Variance μ 1 2 + μ 2 {\displaystyle -\mu _{1}^{2}+\mu _{2}}
Skewness 2 μ 1 3 3 μ 1 μ 2 + μ 3 ( μ 1 2 + μ 2 ) 3 / 2 {\displaystyle {\frac {2\mu _{1}^{3}-3\mu _{1}\mu _{2}+\mu _{3}}{\left(-\mu _{1}^{2}+\mu _{2}\right)^{3/2}}}}
Excess kurtosis 3 μ 1 4 + 6 μ 1 2 μ 2 4 μ 1 μ 3 + μ 4 ( μ 1 2 + μ 2 ) 2 3 {\displaystyle {\frac {-3\mu _{1}^{4}+6\mu _{1}^{2}\mu _{2}-4\mu _{1}\mu _{3}+\mu _{4}}{\left(-\mu _{1}^{2}+\mu _{2}\right)^{2}}}-3} where moments (see) μ r = k B ( c k r c , c + r c ) {\displaystyle \mu _{r}=k\operatorname {\mathrm {B} } \left({\frac {ck-r}{c}},\,{\frac {c+r}{c}}\right)}
CF = c ( i t ) k c Γ ( k ) H 1 , 2 2 , 1 [ ( i t ) c | ( k , 1 ) ( 0 , 1 ) , ( k c , c ) ] , t 0 {\displaystyle ={\frac {c(-it)^{kc}}{\Gamma (k)}}H_{1,2}^{2,1}\!\left[(-it)^{c}\left|{\begin{matrix}(-k,1)\\(0,1),(-kc,c)\end{matrix}}\right.\right],t\neq 0}
= 1 , t = 0 {\displaystyle =1,t=0}
where Γ {\displaystyle \Gamma } is the Gamma function and H {\displaystyle H} is the Fox H-function.[1]

In probability theory, statistics and econometrics, the Burr Type XII distribution or simply the Burr distribution[2] is a continuous probability distribution for a non-negative random variable. It is also known as the Singh–Maddala distribution[3] and is one of a number of different distributions sometimes called the "generalized log-logistic distribution".

Definitions

Probability density function

The Burr (Type XII) distribution has probability density function:[4][5]

f ( x ; c , k ) = c k x c 1 ( 1 + x c ) k + 1 f ( x ; c , k , λ ) = c k λ ( x λ ) c 1 [ 1 + ( x λ ) c ] k 1 {\displaystyle {\begin{aligned}f(x;c,k)&=ck{\frac {x^{c-1}}{(1+x^{c})^{k+1}}}\\[6pt]f(x;c,k,\lambda )&={\frac {ck}{\lambda }}\left({\frac {x}{\lambda }}\right)^{c-1}\left[1+\left({\frac {x}{\lambda }}\right)^{c}\right]^{-k-1}\end{aligned}}}

The λ {\displaystyle \lambda } parameter scales the underlying variate and is a positive real.

Cumulative distribution function

The cumulative distribution function is:

F ( x ; c , k ) = 1 ( 1 + x c ) k {\displaystyle F(x;c,k)=1-\left(1+x^{c}\right)^{-k}}
F ( x ; c , k , λ ) = 1 [ 1 + ( x λ ) c ] k {\displaystyle F(x;c,k,\lambda )=1-\left[1+\left({\frac {x}{\lambda }}\right)^{c}\right]^{-k}}

Applications

It is most commonly used to model household income, see for example: Household income in the U.S. and compare to magenta graph at right.

Random variate generation

Given a random variable U {\displaystyle U} drawn from the uniform distribution in the interval ( 0 , 1 ) {\displaystyle \left(0,1\right)} , the random variable

X = λ ( 1 1 U k 1 ) 1 / c {\displaystyle X=\lambda \left({\frac {1}{\sqrt[{k}]{1-U}}}-1\right)^{1/c}}

has a Burr Type XII distribution with parameters c {\displaystyle c} , k {\displaystyle k} and λ {\displaystyle \lambda } . This follows from the inverse cumulative distribution function given above.

Related distributions

  • The Burr Type XII distribution is a member of a system of continuous distributions introduced by Irving W. Burr (1942), which comprises 12 distributions.[8]
  • The Dagum distribution, also known as the inverse Burr distribution, is the distribution of 1 / X, where X has the Burr distribution

References

  1. ^ Nadarajah, S.; Pogány, T. K.; Saxena, R. K. (2012). "On the characteristic function for Burr distributions". Statistics. 46 (3): 419–428. doi:10.1080/02331888.2010.513442. S2CID 120848446.
  2. ^ Burr, I. W. (1942). "Cumulative frequency functions". Annals of Mathematical Statistics. 13 (2): 215–232. doi:10.1214/aoms/1177731607. JSTOR 2235756.
  3. ^ Singh, S.; Maddala, G. (1976). "A Function for the Size Distribution of Incomes". Econometrica. 44 (5): 963–970. doi:10.2307/1911538. JSTOR 1911538.
  4. ^ Maddala, G. S. (1996) [1983]. Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press. ISBN 0-521-33825-5.
  5. ^ Tadikamalla, Pandu R. (1980), "A Look at the Burr and Related Distributions", International Statistical Review, 48 (3): 337–344, doi:10.2307/1402945, JSTOR 1402945
  6. ^ C. Kleiber and S. Kotz (2003). Statistical Size Distributions in Economics and Actuarial Sciences. New York: Wiley. See Sections 7.3 "Champernowne Distribution" and 6.4.1 "Fisk Distribution."
  7. ^ Champernowne, D. G. (1952). "The graduation of income distributions". Econometrica. 20 (4): 591–614. doi:10.2307/1907644. JSTOR 1907644.
  8. ^ See Kleiber and Kotz (2003), Table 2.4, p. 51, "The Burr Distributions."

Further reading

  • Rodriguez, R. N. (1977). "A guide to Burr Type XII distributions". Biometrika. 64 (1): 129–134. doi:10.1093/biomet/64.1.129.

External links

  • John (2023-02-16). "The other Burr distributions". www.johndcook.com.
  • v
  • t
  • e
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)DirectionalDegenerate
and singular
Degenerate
Dirac delta function
Singular
Cantor
Families
  • Category
  • Commons